login
A296995
Number of edge covers in the n-dipyramidal graph.
3
2, 34, 341, 2902, 23092, 178393, 1359598, 10296846, 77752133, 586292914, 4418053928, 33282217873, 250685741074, 1888064403826, 14219675836741, 107091705316446, 806526755213324, 6074075885446057, 45744715781412614, 344509590254476102, 2594546978760459973
OFFSET
1,1
COMMENTS
Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Jun 26 2018
LINKS
Eric Weisstein's World of Mathematics, Dipyramidal Graph
Eric Weisstein's World of Mathematics, Edge Cover
FORMULA
From Andrew Howroyd, Jun 26 2018: (Start)
a(n) = 11*a(n-1) - 24*a(n-2) - 21*a(n-3) + 33*a(n-4) + 34*a(n-5) + 8*a(n-6) for n > 6.
G.f.: x*(2 + 2*x + x^2)*(1 + 5*x + 2*x^2)/((1 - x - x^2)*(1 - 3*x - 2*x^2)*(1 - 7*x - 4*x^2)). (End)
MATHEMATICA
Table[LucasL[n] + 2^-n ((7 - Sqrt[65])^n + (7 + Sqrt[65])^n) - 2^(-n + 1) ((3 - Sqrt[17])^n + (3 + Sqrt[17])^n), {n, 20}] // Expand
LinearRecurrence[{11, -24, -21, 33, 34, 8}, {2, 34, 341, 2902, 23092, 178393}, 20]
CoefficientList[Series[(-2 - 12 x - 15 x^2 - 9 x^3 - 2 x^4)/(-1 + 11 x - 24 x^2 - 21 x^3 + 33 x^4 + 34 x^5 + 8 x^6), {x, 0, 20}], x]
PROG
(PARI) Vec((2 + 2*x + x^2)*(1 + 5*x + 2*x^2)/((1 - x - x^2)*(1 - 3*x - 2*x^2)*(1 - 7*x - 4*x^2)) + O(x^30)) \\ Andrew Howroyd, Jun 26 2018
CROSSREFS
Sequence in context: A263689 A098531 A356342 * A301611 A224294 A092408
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 18 2018
EXTENSIONS
a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Jun 26 2018
STATUS
approved