This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005968 Sum of cubes of first n Fibonacci numbers. (Formerly M1967) 15
 0, 1, 2, 10, 37, 162, 674, 2871, 12132, 51436, 217811, 922780, 3908764, 16558101, 70140734, 297121734, 1258626537, 5331629710, 22585142414, 95672204155, 405273951280, 1716768021816, 7272346018247, 30806152127640, 130496954475672, 552793970116297, 2341672834801754 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The only two prime terms are a(2) = 2 and a(4) = 37. The prime p divides a(p-1) for p = {11,19,29,31,41,59,61,71,79,89,101,109,...} = A045468[n]. The prime p divides a((p-1)/2) for p = {29,89,101,181,229,...} = A047650[n]. 3^4 divides a(p) for p = {5,13,29,37,53,61,71,101,109,149,157,173...} = A003628[n]. 3^5 divides a(p) for p = (37,53,109,181,197,269,397,431,541,...}. 3^6 divides a(p) for p = {109,541,...}. 3^7 divides a(p) for p = {557,...}. - Alexander Adamchuk, Aug 07 2006 REFERENCES Art Benjamin, Timothy A. Carnes, and Benoit Cloitre, Recounting the Sums of Cubes of Fibonacci Numbers, Congressus Numerantium, Proceeedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, (William Webb, ed.), Vol 194, pp. 45-51, 2009. A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14. A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 18. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Art Benjamin and Timothy A. Carnes (Paper 45), Counting the Sums of Cubes of Fibonacci Numbers. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. FORMULA G.f.: x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)). - Ralf Stephan, Apr 23 2004 a(n) = (1/2)*( F(n)*F(n+1)^2+(-1)^(n-1)*F(n-1)+1). - Benoit Cloitre, Aug 06 2004 a(n) = Sum_{i=1..n} A000045(i)^3. a(n) = (1/10)*( F(3*n+2)-(-1)^(n)*6*F(n-1)+5). - Art Benjamin and Timothy A. Carnes a(n+5) = 4*a(n+4) + 3*a(n+3) - 9*a(n+2) + 2*a(n+1) + a(n). - Benoit Cloitre, Sep 12 2004 MAPLE with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^3; printf(`%d, `, l[i]) od: # James A. Sellers, May 29 2000 A005968:=(-1+2*z+z**2)/(z-1)/(z**2+4*z-1)/(z**2-z-1); # Conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA f[n_]:=(Fibonacci[n]*Fibonacci[n+1]^2+(-1)^(n-1)*Fibonacci[n-1]+1)/2; Table[f[n], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2010 *) Accumulate[Fibonacci[Range[0, 20]]^3] CoefficientList[Series[x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *) PROG (PARI) a(n)=(fibonacci(n)*fibonacci(n+1)^2+(-1)^(n-1)*fibonacci(n-1)+1)/2 (PARI) a(n)=(fibonacci(3*n+2)-(-1)^(n)*6*fibonacci(n-1)+5)/10 (PARI) a(n)=sum(i=1, n, fibonacci(i)^3) (MAGMA) [(1/10)*( Fibonacci(3*n+2)-(-1)^(n)*6*Fibonacci(n-1)+5 ): n in [0..30]]; // G. C. Greubel, Jan 17 2018 CROSSREFS Cf. A001654, A005969, A098531, A098532, A098533. Partial sums of A056570. Cf. A045468, A047650, A003628. Cf. A119284, A000071, A001654, A005969, A098531, A098532, A098533, A128697. Sequence in context: A246604 A124646 A124635 * A212881 A177173 A046241 Adjacent sequences:  A005965 A005966 A005967 * A005969 A005970 A005971 KEYWORD nonn AUTHOR EXTENSIONS More terms from James A. Sellers, May 29 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:14 EDT 2019. Contains 328228 sequences. (Running on oeis4.)