login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005968 Sum of cubes of first n Fibonacci numbers.
(Formerly M1967)
16
0, 1, 2, 10, 37, 162, 674, 2871, 12132, 51436, 217811, 922780, 3908764, 16558101, 70140734, 297121734, 1258626537, 5331629710, 22585142414, 95672204155, 405273951280, 1716768021816, 7272346018247, 30806152127640, 130496954475672, 552793970116297, 2341672834801754 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
From Alexander Adamchuk, Aug 07 2006: (Start)
The only two prime terms are a(2) = 2 and a(4) = 37.
The prime p divides a(p-1) iff p is in A045468.
The prime p divides a((p-1)/2) iff p is in A047650.
3^4 divides a(p) iff p is in A003628.
3^5 divides a(p) for p = {37,53,109,181,197,269,397,431,541,...}.
3^6 divides a(p) for p = {109,541,...}.
3^7 divides a(p) for p = {557,...}. (End)
REFERENCES
Art Benjamin, Timothy A. Carnes, and Benoit Cloitre, Recounting the Sums of Cubes of Fibonacci Numbers, Congressus Numerantium, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, (William Webb, ed.), Vol 194, pp. 45-51, 2009.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 18.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Art Benjamin, Timothy A. Carnes, and Benoit Cloitre, Counting the Sums of Cubes of Fibonacci Numbers.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
David Treeby, Hidden Formulas in Fibonacci Tilings, Fibonacci Quart. 54 (2016), no. 1, 23-30.
FORMULA
G.f.: x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)). - Ralf Stephan, Apr 23 2004
a(n) = (1/2)*(F(n)*F(n+1)^2 + (-1)^(n-1)*F(n-1) + 1). - Benoit Cloitre, Aug 06 2004
a(n) = Sum_{i=1..n} A000045(i)^3.
a(n) = (1/10)*(F(3*n+2) - (-1)^(n)*6*F(n-1) + 5). - Art Benjamin and Timothy A. Carnes
a(n+5) = 4*a(n+4) + 3*a(n+3) - 9*a(n+2) + 2*a(n+1) + a(n). - Benoit Cloitre, Sep 12 2004
MAPLE
with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^3; printf(`%d, `, l[i]) od: # James A. Sellers, May 29 2000
A005968:=(-1+2*z+z**2)/(z-1)/(z**2+4*z-1)/(z**2-z-1); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_]:=(Fibonacci[n]*Fibonacci[n+1]^2+(-1)^(n-1)*Fibonacci[n-1]+1)/2; Table[f[n], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2010 *)
Accumulate[Fibonacci[Range[0, 20]]^3]
CoefficientList[Series[x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
PROG
(PARI) a(n)=(fibonacci(n)*fibonacci(n+1)^2+(-1)^(n-1)*fibonacci(n-1)+1)/2
(PARI) a(n)=(fibonacci(3*n+2)-(-1)^(n)*6*fibonacci(n-1)+5)/10
(PARI) a(n)=sum(i=1, n, fibonacci(i)^3)
(Magma) [(1/10)*( Fibonacci(3*n+2)-(-1)^(n)*6*Fibonacci(n-1)+5 ): n in [0..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
Partial sums of A056570. Cf. A119284 (alternating sum).
Sums of other powers: A000071, A001654, A005969, A098531, A098532, A098533, A128697.
Sequence in context: A246604 A124646 A124635 * A212881 A177173 A046241
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, May 29 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 19:31 EDT 2024. Contains 371962 sequences. (Running on oeis4.)