login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056572 Fifth power of Fibonacci numbers A000045. 14
0, 1, 1, 32, 243, 3125, 32768, 371293, 4084101, 45435424, 503284375, 5584059449, 61917364224, 686719856393, 7615646045657, 84459630100000, 936668172433707, 10387823949447757, 115202670521319424, 1277617458486664901 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

REFERENCES

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..135

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.

A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.

Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.

J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.

Index to divisibility sequences

Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).

FORMULA

a(n) = F(n)^5, F(n)=A000045(n).

G.f.: x*p(5, x)/q(5, x) with p(5, x) := sum(A056588(4, m)*x^m, m=0..4)= 1-7*x-16*x^2+7*x^3+x^4 and q(5, x) := sum(A055870(6, m)*x^m, m=0..6)= 1-8*x-40*x^2+60*x^3+40*x^4-8*x^5-x^6 = (1-x-x^2)*(1+4*x-x^2)*(1-11*x-x^2) (factorization deduced from Riordan result).

Recursion (cf. Knuth's exercise): sum(A055870(6, m)*a(n-m), m=0..6) = 0, n >= 6; inputs: a(n), n=0..5. a(n) = +8*a(n-1) +40*a(n-2) -60*a(n-3) -40*a(n-4) +8*a(n-5) +a(n-6).

a(n) = (10*F(n) + 5*(-1)^(n+1)*F(3*n) + F(5*n))/25, n >= 0. See the general comment on A111418 regarding the Ozeki reference; here the row 10, 5, 1 of that triangle applies. - Wolfdieter Lang, Aug 25 2012

a(n) = (F(n)^2*(F(3*n)-(-1)^n*3*F(n)))/5. - Gary Detlefs, Jan 07 2013

a(n) = F(n-2)*F(n-1)*F(n)*F(n+1)*F(n+2) + F(n). - Tony Foster III, Apr 11 2018

MATHEMATICA

Table[f=Fibonacci[n]; f^5, {n, 0, 12}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *)

PROG

(MAGMA) [Fibonacci(n)^5: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011

(PARI) a(n)=fibonacci(n)^5 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000045, A007598, A056570-1, A056588, A055870.

Fifth row of array A103323.

Sequence in context: A113850 A046454 A050997 * A226098 A096960 A231304

Adjacent sequences:  A056569 A056570 A056571 * A056573 A056574 A056575

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jul 10 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 23:20 EST 2019. Contains 319343 sequences. (Running on oeis4.)