OFFSET
1,2
COMMENTS
Start with [1..n]. Reverse the order of the leftmost 1 element. (trivial) Reverse the order of the rightmost 2 elements. Reverse the order of the leftmost 3 elements of the previous permutation. Reverse the order of the rightmost 4 elements of the previous permutation. ...until... Reverse the order of the rightmost n elements of the (n-1)th permutation if n is even. Or reverse the order of the leftmost n elements of the (n-1)th permutation if n is odd. (Of course, these options are the same thing, reversing the order of the entire permutation.)
LINKS
John Tyler Rascoe, Rows n = 1..148 of triangle, flattened
EXAMPLE
For n=6, the reversals steps are:
[1,2,3,4,5,6]->[1,2,3,4,5,6]->[1,2,3,4,6,5]->[3,2,1,4,6,5]->[3,2,5,6,4,1]->[4,6,5,2,3,1]->[1,3,2,5,6,4].
Triangle begins:
k=1 2 3 4 5 6
n=1: 1,
n=2: 2, 1,
n=3: 2, 3, 1,
n=4: 3, 1, 2, 4,
n=5: 2, 1, 5, 4, 3,
n=6: 1, 3, 2, 5, 6, 4,
...
MAPLE
p:=proc(n) local B, k, u, rev, w; with(linalg): u:=n->[seq(i, i=1..n)]; rev:=proc(a) [seq(a[nops(a)+1-i], i=1..nops(a))] end; w:=(m, n)->[seq(i, i=m..n)]; B[0]:=matrix(1, n, u(n)): if n mod 2 = 0 then for k from 1 to n/2 do B[2*k-1]:=concat(submatrix(B[2*k-2], [1], rev(u(2*k-1))), submatrix(B[2*k-2], [1], w(2*k, n))): B[2*k]:=concat(submatrix(B[2*k-1], [1], u(n-2*k)), submatrix(B[2*k-1], [1], rev(w(n+1-2*k, n)))) od else for k from 1 to (n-1)/2 do B[2*k-1]:=concat(submatrix(B[2*k-2], [1], rev(u(2*k-1))), submatrix(B[2*k-2], [1], w(2*k, n))): B[2*k]:=concat(submatrix(B[2*k-1], [1], u(n-2*k)), submatrix(B[2*k-1], [1], rev(w(n+1-2*k, n)))) od: B[n]:=concat(submatrix(B[n-1], [1], rev(u(n))), submatrix(B[n-1], [1], [])) fi end: for n from 1 to 12 do p(n) od; # supplies the sequence in triangular form # Emeric Deutsch, Nov 17 2004
PROG
(Python)
def A097825_row(n):
c = list(range(1, n+1))
for j in range(2, n):
if j%2 == 0: c = c[:n-j]+c[:n-j-1:-1]
else: c = c[j-1::-1]+c[j:]
return(c[::-1])
for n in range(1, 15):
print(n, A097825_row(n)) # John Tyler Rascoe, Apr 14 2023
CROSSREFS
KEYWORD
AUTHOR
Leroy Quet, Aug 26 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 17 2004
Name edited by John Tyler Rascoe, Apr 19 2023
STATUS
approved