login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002343 Least positive integer y such that p=(x^2-5y^2)/4 where p is the n-th odd prime such that 5 is a square mod p.
(Formerly M0109 N0042)
1
1, 1, 1, 1, 2, 1, 2, 3, 1, 3, 1, 4, 1, 1, 2, 4, 5, 5, 1, 2, 3, 6, 3, 1, 5, 2, 4, 1, 7, 5, 3, 5, 7, 1, 5, 7, 3, 1, 4, 5, 6, 8, 1, 2, 7, 9, 4, 5, 3, 5, 2, 1, 9, 5, 6, 7, 10, 11, 3, 1, 4, 11, 6, 7, 8, 9, 7, 1, 4, 9, 5, 3, 8, 13, 3, 1, 4, 11, 1, 8, 2, 9, 10, 11, 13, 14, 7, 4, 5, 11, 7, 2, 10, 11, 15, 5, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The n-th odd prime for which 5 is a square mod p is A038872(n).

REFERENCES

A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.

D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..97.

A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904 [Annotated scans of selected pages]

EXAMPLE

5=(5^2-5*1^2)/4 so a(1)=1, 11=(7^2-5*1^2)/4 so a(2)=1.

PROG

(PARI) a(n)=local(y, p); if(n<1, 0, p=0; y=1; until(p>=n, y++; if(issquare(5+O(prime(y))), p++)); p=prime(y); y=0; until(issquare(4*p+5*y^2), y++); y)

CROSSREFS

Cf. A002342.

Cf. A002342, A038872.

Sequence in context: A245049 A214261 A097825 * A082076 A231516 A048793

Adjacent sequences:  A002340 A002341 A002342 * A002344 A002345 A002346

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 04:40 EDT 2019. Contains 328291 sequences. (Running on oeis4.)