This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097825 Triangle of permutations of [1,2,3,...,m] made by alternatively swapping left and right terms. (See comment.) 2

%I

%S 1,2,1,2,3,1,3,1,2,4,2,1,5,4,3,1,3,2,5,6,4,6,1,2,3,5,4,7,1,7,4,5,6,8,

%T 3,2,9,7,6,1,4,5,3,2,8,7,10,8,3,6,9,5,4,1,2,5,11,10,7,6,3,8,9,1,2,4,

%U 11,10,12,1,4,5,9,6,3,2,7,8,3,6,7,11,10,5,4,9,12,13,1,8,2,14,6,7,1,2,3,13,10

%N Triangle of permutations of [1,2,3,...,m] made by alternatively swapping left and right terms. (See comment.)

%C Start with [1,2,3,...,m]. Reverse the order of the leftmost 1 element. (trivial) Reverse the order of the rightmost 2 elements. Reverse the order of the leftmost 3 elements of the previous permutation. Reverse the order of the rightmost 4 elements of the previous permutation. ...until... Reverse the order of the rightmost m elements of the (m-1)th permutation if m is even. Or reverse the order of the leftmost m elements of the (m-1)th permutation if m is odd. (Of course, these options are the same thing, reversing the order of the entire permutation.)

%e [1,2,3,4,5,6]->[1,2,3,4,5,6]->[1,2,3,4,6,5]->[3,2,1,4,6,5]->[3,2,5,6,4,1]->[4,6,5,2,3,1]->[1,3,2,5,6,4].

%e Triangle begins:

%e 1,

%e 2, 1,

%e 2, 3, 1,

%e 3, 1, 2, 4,

%e 2, 1, 5, 4, 3,

%e 1, 3, 2, 5, 6, 4,

%e ...

%p p:=proc(n) local B,k,u,rev,w; with(linalg): u:=n->[seq(i,i=1..n)]; rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end; w:=(m,n)->[seq(i,i=m..n)]; B[0]:=matrix(1,n,u(n)): if n mod 2 = 0 then for k from 1 to n/2 do B[2*k-1]:=concat(submatrix(B[2*k-2],[1],rev(u(2*k-1))),submatrix(B[2*k-2],[1],w(2*k,n))): B[2*k]:=concat(submatrix(B[2*k-1],[1],u(n-2*k)),submatrix(B[2*k-1],[1],rev(w(n+1-2*k,n)))) od else for k from 1 to (n-1)/2 do B[2*k-1]:=concat(submatrix(B[2*k-2],[1],rev(u(2*k-1))),submatrix(B[2*k-2],[1],w(2*k,n))): B[2*k]:=concat(submatrix(B[2*k-1],[1],u(n-2*k)),submatrix(B[2*k-1],[1],rev(w(n+1-2*k,n)))) od: B[n]:=concat(submatrix(B[n-1],[1],rev(u(n))),submatrix(B[n-1],[1],[])) fi end: for n from 1 to 12 do p(n) od; # supplies the sequence in triangular form # _Emeric Deutsch_, Nov 17 2004

%K easy,nonn,tabl

%O 1,2

%A _Leroy Quet_, Aug 26 2004

%E More terms from _Emeric Deutsch_, Nov 17 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 06:08 EDT 2019. Contains 328106 sequences. (Running on oeis4.)