login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097828 Partial sums of Chebyshev sequence S(n,13)= U(n,13/2)=A078362(n). 4
1, 14, 182, 2353, 30408, 392952, 5077969, 65620646, 847990430, 10958254945, 141609323856, 1829962955184, 23647909093537, 305592855260798, 3949059209296838, 51032176865598097, 659469240043478424 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..16.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = sum(S(k, 13), k=0..n) with S(k, 13)=U(k, 13/2)=A078362(k) Chebyshev's polynomials of the second kind.

G.f.: 1/((1-x)*(1-13*x+x^2)) = 1/(1-14*x+14*x^2-x^3).

a(n) = 14*a(n-1)-14*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=14.

a(n) = 13*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.

a(n) = (S(n+1, 13) - S(n, 13) -1)/11.

CROSSREFS

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Sequence in context: A163416 A162783 A199942 * A030008 A163090 A163439

Adjacent sequences:  A097825 A097826 A097827 * A097829 A097830 A097831

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 16:46 EDT 2019. Contains 328373 sequences. (Running on oeis4.)