OFFSET
0,2
LINKS
FORMULA
a(n) = sum(S(k, 13), k=0..n) with S(k, 13)=U(k, 13/2)=A078362(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-13*x+x^2)) = 1/(1-14*x+14*x^2-x^3).
a(n) = 14*a(n-1)-14*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=14.
a(n) = 13*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 13) - S(n, 13) -1)/11.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved