login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097308 Chebyshev T-polynomials T(n,13) with Diophantine property. 5
1, 13, 337, 8749, 227137, 5896813, 153090001, 3974443213, 103182433537, 2678768828749, 69544807113937, 1805486216133613, 46873096812360001, 1216895030905226413, 31592397706723526737, 820185445343906468749, 21293229181234844660737, 552803773266762054710413 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)^2 - 42 (2*b(n))^2 = +1 with b(n):=A097309(n) gives all nonnegative solutions of this D:= 42*4= 168 Pell equation.

Numbers n such that 42*(n^2-1) is a square. [From Vincenzo Librandi, Nov 17 2010]

Except for the first term, positive values of x (or y) satisfying x^2 - 26xy + y^2 + 168 = 0. - Colin Barker, Feb 20 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (26,-1).

FORMULA

a(n)=26*a(n-1) - a(n-2), a(-1) := 13, a(0)=1.

a(n)= T(n, 13)= (S(n, 26)-S(n-2, 26))/2 = S(n, 26)-13*S(n-1, 26) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 26)=A097309(n).

a(n)= (ap^n + am^n)/2 with ap := 13+2*sqrt(42) and am := 13-2*sqrt(42).

a(n)= sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*13)^(n-2*k), k=0..floor(n/2)), n>=1.

G.f.: (1-13*x)/(1-26*x+x^2).

a(n)=sqrt(1 + 168*A097309(n)^2), n>=0.

a(n) = Cosh[2n*ArcSinh[Sqrt[6]]] - Herbert Kociemba, Apr 24 2008

MATHEMATICA

CoefficientList[Series[(1 - 13 x)/(1 - 26 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)

PROG

(PARI) Vec((1-13*x)/(1-26*x+x^2) + O(x^100)) \\ Colin Barker, Feb 20 2014

(MAGMA) I:=[1, 13]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014

CROSSREFS

Cf. A097309.

Sequence in context: A258297 A266902 A029807 * A204195 A238652 A041315

Adjacent sequences:  A097305 A097306 A097307 * A097309 A097310 A097311

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

EXTENSIONS

Additional terms from Colin Barker, Feb 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 17 19:40 EST 2017. Contains 294834 sequences.