login
A091667
Decimal expansion of ((-1-sqrt(5))/2 + sqrt((5+sqrt(5))/2))*e^((2*Pi)/5).
2
9, 9, 8, 1, 3, 6, 0, 4, 4, 5, 9, 8, 5, 0, 9, 3, 3, 2, 1, 5, 0, 0, 2, 4, 4, 5, 9, 0, 4, 7, 0, 7, 4, 7, 3, 5, 3, 1, 1, 3, 8, 2, 9, 9, 4, 7, 6, 3, 0, 4, 3, 9, 8, 2, 1, 8, 5, 5, 8, 3, 8, 7, 4, 0, 7, 0, 3, 5, 0, 3, 2, 4, 6, 8, 9, 4, 6, 4, 4, 1, 3, 3, 5, 7, 7, 1, 7, 7, 2, 7, 0, 8, 6, 7, 5, 0, 5, 8, 2, 6, 1, 7, 9, 4, 8
OFFSET
0,1
COMMENTS
Has a nice (non-simple) continued fraction due to Ramanujan.
Continued fraction is 1/(1+q/(1+q^2/(1+q^3/(1+...)))) where q=exp(-2*Pi). - Michael Somos, Sep 12 2005
REFERENCES
K. Srinivas Rao, Ramanujan, a Mathematical Genius, Eastwest Books, Chennai Madras, 2000, p. 42.
Bruce C. Berndt and Robert A. Rankin, Ramanujan: Letters And Commentary, AMS, Providence RI, 1995, p. 29.
Bruce C. Berndt and Robert A. Rankin, Ramanujan: Essays And Surveys, AMS, Providence RI, 2001, p. 243.
G. H. Hardy, Ramanujan: Twelve Lectures on subjects as suggested by his Life and Work, AMS, Chelsea Providence RI, 1999, p. 8, section 1.11.
LINKS
Srinivasa Ramanujan, Journal of the Indian Mathematical Society, Question 352 (iv, 40).
Eric Weisstein's World of Mathematics, Ramanujan Continued Fractions.
FORMULA
Equals 1/A091899.
Equals exp(2*Pi/5) * A158934. - Amiram Eldar, Jan 23 2022
EXAMPLE
0.998136044...
MATHEMATICA
RealDigits[Exp[2*Pi/5]*(Sqrt[(Sqrt[5] + 5)/2] - GoldenRatio), 10, 100][[1]] (* Amiram Eldar, Jan 23 2022 *)
PROG
(PARI) {a(n)=x=exp(2/5*Pi)*(sqrt((5+sqrt(5))/2)-(1+sqrt(5))/2); floor(x*10^(n+1))%10} /* Michael Somos, Sep 12 2005 */
(PARI) {a(n)= x=exp(-2*Pi); x=contfracpnqn(matrix(2, oo, i, j, if(j==1, i==1, if(i==1, x, 1)^(j-2)))); x=t[1, 1]/t[2, 1]; floor(x*10^(n+1))%10} /* Michael Somos, Sep 12 2005 */
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 27 2004
STATUS
approved