login
A091899
Decimal expansion of (1+sqrt(5)+sqrt(2*(5+sqrt(5))))/(2*e^((2*Pi)/5)).
2
1, 0, 0, 1, 8, 6, 7, 4, 3, 6, 2, 1, 9, 3, 1, 8, 6, 0, 6, 0, 7, 7, 2, 2, 7, 6, 8, 0, 4, 2, 4, 1, 5, 7, 0, 8, 7, 1, 2, 2, 4, 2, 4, 1, 2, 7, 4, 2, 7, 4, 9, 7, 0, 5, 4, 5, 0, 0, 1, 3, 0, 1, 9, 0, 2, 1, 0, 9, 4, 9, 7, 9, 8, 9, 0, 9, 5, 6, 2, 8, 2, 5, 7, 1, 2, 9, 3, 8, 2, 5, 0, 3, 5, 3, 0, 9, 9, 9, 6, 2, 5, 5
OFFSET
1,5
COMMENTS
Has a nice (non-simple) continued fraction due to Ramanujan.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Continued Fractions
FORMULA
Equals 1/A091667.
EXAMPLE
1.00186743...
MATHEMATICA
RealDigits[(1 +Sqrt[5] +Sqrt[2*(5 +Sqrt[5])])/(2*Exp[(2*Pi)/5]), 10, 100][[1]] (* G. C. Greubel, Sep 27 2018 *)
PROG
(PARI) default(realprecision, 100); (1 +sqrt(5) +sqrt(2*(5 +sqrt(5))))/( 2*exp((2*Pi)/5)) \\ G. C. Greubel, Sep 27 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (1 +Sqrt(5) +Sqrt(2*(5 +Sqrt(5))))/(2*Exp((2*Pi(R))/5)); // G. C. Greubel, Sep 27 2018
CROSSREFS
Cf. A091667.
Sequence in context: A300503 A153791 A004497 * A292829 A182369 A104175
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Feb 09 2004
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved