OFFSET
0,1
COMMENTS
Has a nice (non-simple) continued fraction due to Ramanujan.
Continued fraction is 1/(1+q/(1+q^2/(1+q^3/(1+...)))) where q=exp(-2*Pi*sqrt(5)). - Michael Somos, Sep 12 2005
REFERENCES
G. H. Hardy, Ramanujan: Twelve Lectures on subjects as suggested by his Life and Work, AMS Chelsea Providence RI, 1999, p. 8, section (1.12).
K. S. Rao, Srinivasa Ramanujan, a Mathematical Genius, Eastwest Books Chennai Madras, 2000, p. 42.
LINKS
I. E. S. Cartuja, Srinivasa Ramanujan (text in Spanish). [Wayback Machine copy]
Horst Gierhardts, Three Famous Formulas of Ramanujan.
Shriram Sarvotham, Srinivasa Ramanujan. [Wayback Machine copy]
Eric Weisstein's World of Mathematics, Ramanujan Continued Fractions.
FORMULA
Equals 1/A091900.
EXAMPLE
0.99999920873290079312747304093371578651515941500540...
MATHEMATICA
With[{v = Sqrt[5]}, RealDigits[Exp[2*Pi/v] * (v/(1 + (5^(3/4)/((1 + v)/2)^(5/2) - 1)^(1/5)) - (1 + v)/2), 10, 120][[1]]] (* Amiram Eldar, Jun 08 2023 *)
PROG
(PARI) {a(n)=local(s); s=sqrt(5); x=exp(2*Pi/s)*(s/(1+(5^(3/4)/((1+s)/2)^(5/2)-1)^(1/5))-(1+s)/2); floor(x*10^(n+1))%10} /* Michael Somos, Sep 12 2005 */
(PARI) {a(n)= x=exp(-2*Pi*sqrt(5)); x=contfracpnqn(matrix(2, oo, i, j, if(j==1, i==1, if(i==1, x, 1)^(j-2)))); x=t[1, 1]/t[2, 1]; floor(x*10^(n+1))%10} /* Michael Somos, Sep 12 2005 */
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 27 2004
STATUS
approved