login
A085582
The number of rectangles (orthogonal or not) with corners on an n X n grid of points.
11
0, 1, 10, 44, 130, 313, 640, 1192, 2044, 3305, 5078, 7524, 10750, 14993, 20388, 27128, 35448, 45665, 57922, 72636, 89970, 110297, 133976, 161440, 192860, 228857, 269758, 316012, 367974, 426417, 491468, 564120, 644640, 733633, 831674, 939292
OFFSET
1,3
LINKS
FORMULA
a(n) = A000537(n-1) + A113751(n). - T. D. Noe, Nov 09 2005 [corrected by David Radcliffe, Feb 06 2020]
a(n) = n*(n-1)^2*(2n-1)/6 + 2*Sum_{a,b>0, 0<s<r<n, gcd(r,s)=1} max(n-a*s-b*r,0)*max(n-a*r-b*s,0). - David Radcliffe, Feb 06 2020
EXAMPLE
a(3) = 10 because on the 3 X 3 grid there are four 1 X 1 rectangles, two 1 X 2s, two 2 X 1's, one 2 X 2 and one 45-degree rectangle, sqrt(2) X sqrt(2).
CROSSREFS
Cf. A000537, A002415, A113751 (diagonal rectangles on an n X n grid).
Sequence in context: A256050 A257052 A008532 * A058310 A005720 A060326
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 06 2003
EXTENSIONS
Edited by Don Reble, Nov 05 2005
STATUS
approved