login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058310 (1/2)*(n^2+n+2)*(n^2+3*n+1). 2
1, 10, 44, 133, 319, 656, 1210, 2059, 3293, 5014, 7336, 10385, 14299, 19228, 25334, 32791, 41785, 52514, 65188, 80029, 97271, 117160, 139954, 165923, 195349, 228526, 265760, 307369, 353683, 405044, 461806, 524335, 593009, 668218, 750364, 839861, 937135 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..36.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = sum(i, i = n..(n+1)^2).

G.f.: (1+5*x+4*x^2+3*x^3-x^4)/(1-x)^5; a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Sep 14 2014

MAPLE

A058310:=n->(n^2+n+2)*(n^2+3*n+1)/2: seq(A058310(n), n=0..40); # Wesley Ivan Hurt, Sep 14 2014

MATHEMATICA

Table[(n^2 + n + 2) (n^2 + 3 n + 1)/2, {n, 0, 40}] (* Wesley Ivan Hurt, Sep 14 2014 *)

CoefficientList[Series[(1 + 5 x + 4 x^2 + 3 x^3 - x^4)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 14 2014 *)

PROG

(MAGMA) [(n^2+n+2)*(n^2+3*n+1)/2 : n in [0..40]]; // Wesley Ivan Hurt, Sep 14 2014

(PARI) Vec((1+5*x+4*x^2+3*x^3-x^4)/(1-x)^5 + O(x^50)) \\ Michel Marcus, Sep 15 2014

CROSSREFS

Sequence in context: A257052 A008532 A085582 * A005720 A060326 A200448

Adjacent sequences:  A058307 A058308 A058309 * A058311 A058312 A058313

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 09 2000

EXTENSIONS

More terms from Wesley Ivan Hurt, Sep 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 16:52 EST 2018. Contains 318229 sequences. (Running on oeis4.)