OFFSET
1,2
COMMENTS
The constant K(3) is related to the Josephus problem with q=3 and the computation of A054995.
The number also occurs in Washburn's solution cited in References. Regarding Washburn's limit more generally (with x in place of 3/2) results in a disconnected function as plotted by the Mathematica program below. - Clark Kimberling, Oct 24 2012
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 131.
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 1..20000
A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33 (1991), 235-240.
A.H.M. Smeets, 100000 decimal digits.
E. T. H. Wang, Phillip C. Washburn, Problem E2604, American Mathematical Monthly, 84 (1977), 821-822.
Eric Weisstein's World of Mathematics, Power Ceilings.
EXAMPLE
1.62227050288476731595695...
MATHEMATICA
s[x_, 0] := 0; s[x_, n_] := Floor[x*s[x, n - 1]] + 1
c[x_, n_] := ((1/x)^n) s[x, n]
t = N[c[3/2, 800], 120]
RealDigits[t, 10] (* A083286 *)
(* Display of the surroundings of 3/2 *)
Plot[N[c[x, 20]], {x, 1, 3}]
(* Clark Kimberling, Oct 24 2012 *)
PROG
(PARI) p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0.
(Python)
d, a, n, nmax = 3, 0, 0, 150000
while n < nmax:
n, a = n+1, (a*d)//(d-1)+1
nom, den, pos = a*(d-1)**n, d**n, 0
while pos < 20000:
dig, nom, pos = nom//den, (nom%den)*10, pos+1
print(pos, dig) # A.H.M. Smeets, Jul 05 2019
CROSSREFS
KEYWORD
AUTHOR
Ralf Stephan, Apr 23 2003
STATUS
approved