

A083286


Decimal expansion of K(3), a constant related to the Josephus problem.


10



1, 6, 2, 2, 2, 7, 0, 5, 0, 2, 8, 8, 4, 7, 6, 7, 3, 1, 5, 9, 5, 6, 9, 5, 0, 9, 8, 2, 8, 9, 9, 3, 2, 4, 1, 1, 3, 0, 6, 6, 1, 0, 5, 5, 6, 2, 3, 1, 3, 0, 3, 7, 4, 3, 2, 1, 8, 5, 4, 4, 3, 3, 8, 7, 3, 7, 8, 4, 3, 3, 9, 9, 9, 7, 2, 7, 4, 8, 4, 4, 7, 6, 3, 8, 3, 6, 1, 6, 5, 3, 9, 8, 3, 3, 2, 3, 3, 4, 1, 1, 0, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The constant K(3) = 1.62227050288476731595695... is related to the Josephus problem with q=3 and the computation of A054995.
The number also occurs in Washburn's solution cited in References. Regarding Washburn's limit more generally (with x in place of 3/2) results in a disconnected function as plotted by the Mathematica program below.  Clark Kimberling, Oct 24 2012


LINKS

Table of n, a(n) for n=1..102.
A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235240, 1991.
E. T. H. Wang, Phillip C. Washburn, Problem E2604, American Mathematical Monthly 84 (1977) pp. 821822.
Eric Weisstein's World of Mathematics, Power Ceilings


MATHEMATICA

s[x_, 0] := 0; s[x_, n_] := Floor[x*s[x, n  1]] + 1
c[x_, n_] := ((1/x)^n) s[x, n]
t = N[c[3/2, 800], 120]
RealDigits[t, 10] (* A083286 *)
(* Display of the surroundings of 3/2 *)
Plot[N[c[x, 20]], {x, 1, 3}]
(* Clark Kimberling, Oct 24 2012 *)


PROG

(PARI) p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0.


CROSSREFS

Cf. A054995, A083287.
Sequence in context: A020795 A136710 A276801 * A247818 A172439 A169684
Adjacent sequences: A083283 A083284 A083285 * A083287 A083288 A083289


KEYWORD

nonn,cons


AUTHOR

Ralf Stephan, Apr 23 2003


STATUS

approved



