login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083287 Continued fraction expansion of K(3), a constant related to the Josephus problem. 1
1, 1, 1, 1, 1, 1, 5, 10, 19, 1, 4, 4, 4, 3, 10, 1, 42, 2, 23, 33, 1, 4, 7, 1, 12, 1, 1, 2, 9, 2, 11, 3, 4, 1, 1, 3, 2, 4, 25, 3, 1, 16, 5, 10, 1, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 3, 4, 3, 1, 1, 117, 2, 1, 12, 4, 1, 4, 3, 3, 15, 1, 5, 16, 7, 2, 7, 21, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

The constant K(3)=1.62227050288476731595695... is related to the Josephus problem with q=3 and the computation of A054995.

LINKS

Table of n, a(n) for n=1..93.

A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991.

MATHEMATICA

For[p = 1; nn = 10^4; n = 1, n <= nn, n++, p = Ceiling[3/2*p]]; p/(3/2)^nn // ContinuedFraction[#, 93] & (* Jean-Fran├žois Alcover, Jul 11 2013, after Pari *)

PROG

(PARI) p=1; N=10^4; for(n=1, N, p=ceil(3/2*p)); c=(p/(3/2)^N)+0. \\ This gives K(3) not the sequence!

CROSSREFS

Cf. A054995, A083286.

Sequence in context: A251928 A153370 A119135 * A091922 A030776 A115289

Adjacent sequences:  A083284 A083285 A083286 * A083288 A083289 A083290

KEYWORD

nonn,cofr

AUTHOR

Ralf Stephan, Apr 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 22:55 EST 2020. Contains 332270 sequences. (Running on oeis4.)