The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054995 A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer two places clockwise from i. Repeat, counting two places from the next undeleted integer, until only one integer remains. 14
 1, 2, 2, 1, 4, 1, 4, 7, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 17, 20, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 1, 4, 7, 10, 13, 16, 19, 22, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If one counts only one place (rather than two) at each stage to determine the element to be deleted, the Josephus survivors (A006257) are obtained. LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 Ph. Dumas, Algebraic aspects of B-regular series. [Broken link] Philippe Dumas, Algebraic aspects of B-regular series, Research Report, RR-1931, INRIA, 1993. Ph. Dumas, Algebraic aspects of B-regular series, in: International Colloquium on Automata, Languages and Programming, ICALP 1993 (A. Lingas, R. Karlsson, S. Carlsson, eds.), pp. 457-468, Lecture Notes in Computer Science, vol. 700, Springer, Berlin, 1993. L. Halbeisen and N. Hungerbühler, The Josephus Problem, J. Théor. Nombres Bordeaux 9 (1997), no. 2, 303-318. Alasdair MacFhraing, Aireamh Muinntir Fhinn Is Dhubhain, Agus Sgeul Josephuis Is An Da Fhichead Iudhaich, [Gaelic with English summary], Proc. Royal Irish Acad., Vol. LII, Sect. A., No. 7, 1948, 87-93. A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991. FORMULA a(n) = 3*n + 1 - floor(K(3)*(3/2)^(ceiling(log((2*n+1)/K(3))/log(3/2)))) where K(3) = (3/2)*K = 1.622270502884767... (K is the constant described in A061419); a(n) = 3n + 1 - A061419(k+1) where A061419(k+1) is the least integer such that A061419(k+1) > 2n. a(1) = 1 and, for n > 1, a(n) = (a(n-1) + 3) mod n, if this value is nonzero, n otherwise. a(n) = (a(n-1) + 2) mod n + 1. - Paul Weisenhorn, Oct 10 2010 EXAMPLE a(5) = 4 because the elimination process gives (1^,2,3,4,5) -> (1,2,4^,5) -> (2^,4,5) -> (2^,4) -> (4), where ^ denotes the counting reference position. a(13) = 13 => a(14) = (a(13) + 2) mod 14 + 1 = 2. - Paul Weisenhorn, Oct 10 2010 MATHEMATICA (* First do *) Needs["Combinatorica`"] (* then *) f[n_] := Last@ InversePermutation@ Josephus[n, 3]; Array[f, 70] (* Robert G. Wilson v, Jul 31 2010 *) Table[Nest[Rest@RotateLeft[#, 2] &, Range[n], n - 1], {n, 72}] // Flatten (* Arkadiusz Wesolowski, Jan 14 2013 *) CROSSREFS Cf. A032434, A005427, A005428, A006257, A007495, A000960, A056530. Cf. A181281 (with s=5). - Paul Weisenhorn, Oct 10 2010 Sequence in context: A268193 A238606 A325612 * A018219 A174714 A116633 Adjacent sequences:  A054992 A054993 A054994 * A054996 A054997 A054998 KEYWORD nonn AUTHOR John W. Layman, May 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 02:02 EDT 2020. Contains 335658 sequences. (Running on oeis4.)