This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054995 A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer two places clockwise from i. Repeat, counting two places from the next undeleted integer, until only one integer remains. 13
 1, 2, 2, 1, 4, 1, 4, 7, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 17, 20, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 1, 4, 7, 10, 13, 16, 19, 22, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If one counts only one place (rather than two) at each stage to determine the element to be deleted, the Josephus survivors (A006257) are obtained. REFERENCES Alasdair MacFhraing, Aireamh Muinntir Fhinn Is Dhubhain, Agus Sgeul Josephuis Is An Da Fhichead Iudhaich [Gaelic with English summary], Proc. Royal Irish Acad., Vol. LII, Sect. A., No. 7, 1948, 87-93. LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 Ph. Dumas, Algebraic aspects of B-regular series L. Halbeisen and N. Hungerbühler, The Josephus Problem, J. Théor. Nombres Bordeaux 9 (1997), no. 2, 303-318. A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991. FORMULA a(n) = 3*n+1-floor(K(3)*(3/2)^(ceil(log((2*n+1)/K(3))/log(3/2)))) where K(3)=(3/2)*K=1.622270502884767... (K is the constant described in A061419); a(n)=3n+1-A061419(k+1) where A061419(k+1) is the least integer such that A061419(k+1)>2n. a(1) = 1 and, for n>1, a(n) = (a(n-1)+3) mod n, if this value is nonzero, n otherwise. a(n) = (a(n-1)+2) mod n +1. - Paul Weisenhorn, Oct 10 2010 EXAMPLE a(5) = 4 because the elimination process gives (1^,2,3,4,5) -> (1,2,4^,5) -> (2^,4,5) -> (2^,4) -> (4), where ^ denotes the counting reference position. a(13) = 13 => a(14) = (a(13)+2) mod 14 +1 = 2. - Paul Weisenhorn, Oct 10 2010 MATHEMATICA (* First do *) Needs["Combinatorica`"] (* then *) f[n_] := Last@ InversePermutation@ Josephus[n, 3]; Array[f, 70] (* Robert G. Wilson v, Jul 31 2010 *) Table[Nest[Rest@RotateLeft[#, 2] &, Range[n], n - 1], {n, 72}] // Flatten (* Arkadiusz Wesolowski, Jan 14 2013 *) CROSSREFS Cf. A032434, A005427, A005428, A006257, A007495, A000960, A056530. Cf. A181281 (with s=5). - Paul Weisenhorn, Oct 10 2010 Sequence in context: A129721 A268193 A238606 * A018219 A174714 A116633 Adjacent sequences:  A054992 A054993 A054994 * A054996 A054997 A054998 KEYWORD nonn AUTHOR John W. Layman, May 30 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 15:43 EDT 2019. Contains 321345 sequences. (Running on oeis4.)