login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082985
Coefficient table for Chebyshev's U(2*n,x) polynomial expanded in decreasing powers of (-4*(1-x^2)).
13
1, 1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 27, 30, 9, 1, 11, 44, 77, 55, 11, 1, 13, 65, 156, 182, 91, 13, 1, 15, 90, 275, 450, 378, 140, 15, 1, 17, 119, 442, 935, 1122, 714, 204, 17, 1, 19, 152, 665, 1729, 2717, 2508, 1254, 285, 19
OFFSET
0,3
COMMENTS
Sum of row #n = A000204(2n+1), i.e., A002878(n).
Row #n has the unsigned coefficients of a polynomial whose roots are 2 sin(2*Pi*k/(2n+1)) [for k=1 to 2n].
The positive roots are the diagonal lengths of a regular (2n+1)-gon, inscribed in the unit circle.
Polynomial of row #n = Sum_{m=0..n} (-1)^m T(n,m) x^(2n-2m).
This is also the unsigned coefficient table of Chebyshev's 2*T(2*n+1,x) polynomials expanded in decreasing odd powers of 2*x. - Wolfdieter Lang, Mar 07 2007
The n-th row are the coefficients of the polynomial S(n) where S(0)=1, S(1)=x+3, and S(n) = (x+2)*S(n-1) - S(n-2) (see Sun link). - Michel Marcus, Mar 07 2016
REFERENCES
J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, 1992; see pp. 151,175.
Stephen Eberhart, "Mathematical-Physical Correspondence," Number 37-38, Jan 08, 1982.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681.
Zhi-Hong Sun, Expansions and identities concerning Lucas sequences, Fibonacci Quart. 44 (2006), no. 2, 145-153. See Theorem 3.1
FORMULA
Triangle read by rows: row #n has n+1 terms. T(n,0)=1, T(n,n)=2n+1, T(n,m) = T(n-1,m-1) + Sum_{k=0..m} T(n-1-k, m-k).
T(k, s) = ((2k+1)/(2s+1))*binomial(k+s, 2s), 0 <= s <= k; then transpose the triangle. - Gary W. Adamson, May 29 2003
From Wolfdieter Lang, Mar 07 2007: (Start)
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*binomial(2*n+1-m,m)*(2*n+1)/(2*n+1-m). From the Rivlin reference, p. 37, eq.(1.92), using the differential eq. for T(2*n+1,x). Also from Waring's formula.
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*(Sum_{k=0..n-m} binomial(m+k,k)*binomial(2*n+1,2*(k+m))/2^(2*(n-m)). Proof: De Moivre's formula for cos((2*n+1)*phi) rewritten in terms of odd powers of cos(phi). Cf. Rivlin reference p. 4, eq.(1.10).
Signed version: a(n,m) = A084930(n,n-m)/2^(2*(n-m)) (scaled coefficients of Chebyshev's T(2*n+1,x)), decreasing odd powers).
Unsigned version: a(n,m)=0 if n < m, otherwise a(n,m) = binomial(2*n-m,m)*(2*n+1)/(2*(n-m)+1). From the differential eq. for U(2*n,x). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i,n-2*i) = A003945(n). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i, n-2*i)*4^i = 3^n = A000244(n). - Philippe Deléham, Feb 24 2012
From Paul Weisenhorn Nov 25 2019: (Start)
T(r,k) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2) with 1 <= r and 1 <= k <= r.
For a given n, one gets r = floor((1+sqrt(8*n))/2), k = n-(r^2-r)/2, a(n) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2). (End)
EXAMPLE
Expansion of polynomials:
x^0;
x^2 - 3*x^0;
x^4 - 5*x^2 + 5*x^0;
x^6 - 7*x^4 + 14*x^2 - 7*x^0;
x^8 - 9*x^6 + 27*x^4 - 30*x^2 + 9*x^0;
x^10 - 11*x^8 + 44*x^6 - 77*x^4 + 55*x^2 - 11*x^0; ...
Polynomial #4 has 8 roots: 2*sin(2*Pi*k/9) for k=1 to 8.
Coefficients (with signs removed) are
1;
1, 3;
1, 5, 5;
1, 7, 14, 7;
1, 9, 27, 30, 9;
1, 11, 44, 77, 55, 11;
...
MAPLE
A082985 := proc(n, m)
binomial(2*n-m, m)*(2*n+1)/(2*n-2*m+1) ;
end proc: # R. J. Mathar, Sep 08 2013
MATHEMATICA
T[n_, m_]:= Binomial[2*n-m, m]*(2*n+1)/(2*n-2*m+1); Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 08 2013, after R. J. Mathar *)
PROG
(PARI) T(n, k)=binomial(2*n-k, k)*(2*n+1)/(2*n-2*k+1); \\ G. C. Greubel, Dec 30 2019
(Magma) [Binomial(2*n-k, k)*(2*n+1)/(2*n-2*k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 30 2019
(Sage) [[binomial(2*n-k, k)*(2*n+1)/(2*n-2*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 30 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Binomial(2*n-k, k)*(2*n+1)/(2*n-2*k+1) ))); # G. C. Greubel, Dec 30 2019
CROSSREFS
Cf. companion triangle A084534.
Sequence in context: A131768 A232632 A084533 * A111125 A209159 A182397
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, May 29 2003
EXTENSIONS
Edited by Anne Donovan (anned3005(AT)aol.com), Jun 11 2003
Re-edited by Don Reble, Nov 12 2005
STATUS
approved