login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642. 0
1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.

Hence

                    1    1/2   1/6      0

            1    -1/2   -1/3  -1/6  -1/30

      1   -3/2    1/6    1/6  2/15   1/15

  1 -5/2   5/3      0  -1/30 -1/15 -8/105.

The second row is A051716/A051717.

The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=

B(0)=    1 = 1                 Redbernou1li

B(1)= -1/2 = 1  -3/2

B(2)=  1/6 = 1  -5/2  5/3

B(3)=    0 = 1  -7/2 25/6  -5/3

B(4)=-1/30 = 1  -9/2 23/3 -35/6  49/30

B(5)=    0 = 1 -11/2 73/6 -27/2 112/15 -49/30.

For the main diagonal, see A165142.

Denominator b(n) will be submitted.

This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).

With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.

Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is

1

1  -3/2

1  -5/2 10/6

1  -7/2 25/6 -10/6

1  -9/2 46/6 -35/6  49/30

1 -11/2 73/6 -81/6 224/30 -49/30.

For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.

Triangle Checkbernou1 with the same denominator A080326 for every row is

1/1

(2    -3)/2

(6   -15  +10)/6

(6   -21  +25  -10)/6

(30 -135 +230 -175  +49)/30

(30 -165 +365 -405 +224 -49)/30;

Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.

Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:

1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

LINKS

Table of n, a(n) for n=0..47.

FORMULA

CB(0,x) = 1,

CB(1,x) = 1 - 3*x/2,

CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.

CROSSREFS

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Sequence in context: A082985 A111125 A209159 * A209560 A211977 A072919

Adjacent sequences:  A182394 A182395 A182396 * A182398 A182399 A182400

KEYWORD

sign,frac,tabl

AUTHOR

Paul Curtz, Apr 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 11:57 EST 2019. Contains 320219 sequences. (Running on oeis4.)