This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172431 Even row Pascal-square read by antidiagonals. 7
 1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Apart from signs identical to A053123. Mirror of A078812. As a triangle, row n consists of the coefficients of Morgan-Voyce polynomial B(n,x); e.g., B(3,x)=x^3+6x^2+10x+4. As a triangle, rows 0 to 4 are as follows: 1 1...2 1...4...3 1...6...10...4 1...8...21...20...5 See A054142 for coefficients of Morgan-Voyce polynomial b(n,x). Scaled version of A119900. - Philippe Deléham, Feb 24 2012 A172431 is jointly generated with A054142 as an array of coefficients of polynomials v(n,x):  initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1)x and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012 Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012 LINKS FORMULA As a decimal sequence: a(n)= 12*a(n-1)- a(n-2) with a(1)=1. [I interpret this remark as: 1, 12=1,2, 143=1,4,3, 1704=1,6,10,4... taken from A004191 are decimals on the diagonal. - R. J. Mathar, Sep 08 2013] As triangle T(n,k): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012 As DELTA-triangle T(n,k) with 0<=k<=n: G.f.: (1-y*x)^2/((1-y*x)^2-x). - Philippe Deléham, Mar 22 2012 T(n, k) = GegenbauerC(k, n-k, 1). - Peter Luschny, May 10 2016 As triangle T(n,k): Product_{k=1..n} T(n,k) = Product_{k=0..n-1} binomial(2*k,k) = A007685(n-1)  for n >= 1. - Werner Schulte, Apr 26 2017 EXAMPLE Array begins: 1,2,3,4,5,... 1,4,10,20,... 1,6,21,56,... Example: Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above. For n = 9 the a(9)= 10 solution is 2*4 - 1 + 3 Triangle T(n,k) begins: 1 1, 2 1, 4, 3 1, 6, 10, 4 1, 8, 21, 20, 5 1, 10, 36, 56, 35, 6 1, 12, 55, 120, 126, 56, 7. - Philippe Deléham, Feb 24 2012 (1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins: 1 1, 0 1, 2, 0 1, 4, 3, 0 1, 6, 10, 4, 0 1, 8, 21, 20, 5, 0 1, 10, 36, 56, 35, 6, 0 1, 12, 55, 120, 126, 56, 7, 0. - Philippe Deléham, Mar 22 2012 MAPLE T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)): for n from 0 to 10 do seq(T(n, k), k=0..n-1) od; # Peter Luschny, May 10 2016 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A054142 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A172431 *) (* Clark Kimberling, Mar 09 2012 *) CROSSREFS Cf. A078812, A053123, A007318, A001906, A007685. Cf. also A054142, A082985. Sequence in context: A093190 A132191 A094437 * A053123 A107661 A126570 Adjacent sequences:  A172428 A172429 A172430 * A172432 A172433 A172434 KEYWORD nonn,tabl AUTHOR Mark Dols, Feb 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 12:30 EDT 2019. Contains 328318 sequences. (Running on oeis4.)