

A082411


Secondorder linear recurrence sequence with a(n) = a(n1) + a(n2).


4



407389224418, 76343678551, 483732902969, 560076581520, 1043809484489, 1603886066009, 2647695550498, 4251581616507, 6899277167005, 11150858783512, 18050135950517, 29200994734029, 47251130684546, 76452125418575, 123703256103121, 200155381521696, 323858637624817
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(0) = 407389224418, a(1) = 76343678551. This is a secondorder linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by John Nicol in 1999.


REFERENCES

R. L. Graham, Math. Mag. 37, 1964, pp. 322324.
D. E. Knuth, Math. Mag. 63, 1990, pp. 2125.
H. S. Wilf, Letters to the Editor, Math. Mag. 63, 1990.


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
J. W. Nicol, A Fibonaccilike sequence of composite numbers
Index to sequences with linear recurrences with constant coefficients, signature (1,1).


FORMULA

G.f.: (407389224418331045545867*x)/(1xx^2). [Colin Barker, Jun 19 2012]


MAPLE

a:= n> (<<01>, <11>>^n. <<407389224418, 76343678551>>)[1, 1]:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 04 2013


CROSSREFS

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083104, A083105, A083216.
Sequence in context: A172714 A080132 A080122 * A113952 A218865 A209833
Adjacent sequences: A082408 A082409 A082410 * A082412 A082413 A082414


KEYWORD

nonn,easy


AUTHOR

Harry J. Smith, Apr 23 2003


STATUS

approved



