login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082411 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2). 4
407389224418, 76343678551, 483732902969, 560076581520, 1043809484489, 1603886066009, 2647695550498, 4251581616507, 6899277167005, 11150858783512, 18050135950517, 29200994734029, 47251130684546, 76452125418575, 123703256103121, 200155381521696, 323858637624817 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(0) = 407389224418, a(1) = 76343678551. This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by John Nicol in 1999.

REFERENCES

R. L. Graham, Math. Mag. 37, 1964, pp. 322-324.

D. E. Knuth, Math. Mag. 63, 1990, pp. 21-25.

H. S. Wilf, Letters to the Editor, Math. Mag. 63, 1990.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

J. W. Nicol, A Fibonacci-like sequence of composite numbers

Index to sequences with linear recurrences with constant coefficients, signature (1,1).

FORMULA

G.f.: (407389224418-331045545867*x)/(1-x-x^2). [Colin Barker, Jun 19 2012]

MAPLE

a:= n-> (<<0|1>, <1|1>>^n. <<407389224418, 76343678551>>)[1, 1]:

seq(a(n), n=0..20);  # Alois P. Heinz, Apr 04 2013

CROSSREFS

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083104, A083105, A083216.

Sequence in context: A172714 A080132 A080122 * A113952 A218865 A209833

Adjacent sequences:  A082408 A082409 A082410 * A082412 A082413 A082414

KEYWORD

nonn,easy

AUTHOR

Harry J. Smith, Apr 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 23 06:16 EDT 2014. Contains 240913 sequences.