login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083104 Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2). 4
331635635998274737472200656430763, 1510028911088401971189590305498785, 1841664547086676708661790961929548, 3351693458175078679851381267428333, 5193358005261755388513172229357881, 8545051463436834068364553496786214 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(0) = 331635635998274737472200656430763, a(1) = 1510028911088401971189590305498785. This is a second-order linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by Ronald Graham in 1990.

REFERENCES

R. L. Graham, Math. Mag. 37, 1964, pp. 322-324.

D. E. Knuth, Math. Mag. 63, 1990, pp. 21-25.

LINKS

Table of n, a(n) for n=0..5.

Tanya Khovanova, Recursive Sequences

J. W. Nicol, A Fibonacci-like sequence of composite numbers

Prime Puzzles, Problem 31. Fibonacci- all composites sequence

Index to sequences with linear recurrences with constant coefficients, signature (1,1).

FORMULA

G.f.: (331635635998274737472200656430763+1178393275090127233717389649068022*x)/(1-x-x^2). [Colin Barker, Jun 19 2012]

CROSSREFS

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083105, A083216, A082411.

Sequence in context: A003936 A120318 A095458 * A115531 A095460 A083103

Adjacent sequences:  A083101 A083102 A083103 * A083105 A083106 A083107

KEYWORD

nonn,easy

AUTHOR

Harry J. Smith, Apr 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 31 20:02 EDT 2014. Contains 248868 sequences.