

A083104


Secondorder linear recurrence sequence with a(n) = a(n1) + a(n2).


4



331635635998274737472200656430763, 1510028911088401971189590305498785, 1841664547086676708661790961929548, 3351693458175078679851381267428333, 5193358005261755388513172229357881, 8545051463436834068364553496786214
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is a secondorder linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by Ronald Graham in 1964.


REFERENCES

R. L. Graham, A Fibonaccilike sequence of composite numbers, Mathematics Magazine 37:5 (1964), pp. 322324.
D. E. Knuth, Math. Mag. 63, 1990, pp. 2125.


LINKS

Table of n, a(n) for n=0..5.
Tanya Khovanova, Recursive Sequences
J. W. Nicol, A Fibonaccilike sequence of composite numbers
Prime Puzzles, Problem 31. Fibonacci all composites sequence
Index entries for linear recurrences with constant coefficients, signature (1,1).


FORMULA

G.f.: (331635635998274737472200656430763+1178393275090127233717389649068022*x)/(1xx^2).  Colin Barker, Jun 19 2012


PROG

(PARI) a(n)=331635635998274737472200656430763*fibonacci(n1)+ 1510028911088401971189590305498785*fibonacci(n) \\ Charles R Greathouse IV, Dec 18 2014


CROSSREFS

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083105, A083216, A082411.
Sequence in context: A003936 A120318 A095458 * A115531 A095460 A083103
Adjacent sequences: A083101 A083102 A083103 * A083105 A083106 A083107


KEYWORD

nonn,easy


AUTHOR

Harry J. Smith, Apr 23 2003


STATUS

approved



