

A113952


Largest exclusionary nth power (or 0 if no such number exists).


1



408540845584, 449103134312, 51050010415041, 0, 606355001344, 60170087060757, 66045000696445844586496, 0, 3570467226624, 743008370688, 16777216, 0, 9012061295995008299689, 0, 1853020188851841, 0, 0, 1162261467, 1099511627776
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

An exclusionary nth power m^n is one made up of digits not appearing in the root m which itself consists of distinct digits. For the corresponding root m, see A113951. In principle, no exclusionary nth power exists for n=1(mod 4)=A016813.


REFERENCES

H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 3469 Journal of Recreational Mathematics, Vol. 32 No.4 20034 Baywood NY.


LINKS

Table of n, a(n) for n=2..20.


EXAMPLE

a(10)=3570467226624 because it shares no digit in common with its 10th root 18 and no number with distinct digits greater than 18 exhibits such property.


CROSSREFS

Cf. A112735, A112993, A113317.
Sequence in context: A269417 A281963 A082411 * A218865 A289111 A209833
Adjacent sequences: A113949 A113950 A113951 * A113953 A113954 A113955


KEYWORD

base,nonn,fini


AUTHOR

Lekraj Beedassy, Nov 09 2005


STATUS

approved



