login
A363799
Numbers whose binary representation has more 1-bits than its cube.
2
407182835067, 445317119867, 478351981947, 814365670134, 873268508637, 890634239734, 956703963894, 956703964539, 1628731340268, 1746537017274, 1781268479468, 1913407927788, 1913407929078, 2774213097787, 3257462680536, 3493074034548, 3562536958936, 3573277243773
OFFSET
1,1
COMMENTS
a(n) must have more 1-bits than a(n)^3 when they are written in binary.
LINKS
Chris K. Caldwell and G. L. Honaker, Jr., 445317119867, Prime Curios!
K. G. Hare, S. Laishram, and T. Stoll, Stolarsky's conjecture and the sum of digits of polynomial values, arXiv:1001.4169 [math.NT], 2010. See p. 3.
EXAMPLE
407182835067 is a term because A000120(407182835067) = 29, while A192085(407182835067) = A000120(407182835067^3) = 28.
PROG
(PARI) isok(k) = hammingweight(k) > hammingweight(k^3); \\ Michel Marcus, Aug 07 2023
CROSSREFS
Cf. A000120, A192085, A138597 (equality).
Cf. A094694 (for squares).
Sequence in context: A269417 A281963 A357687 * A082411 A113952 A375647
KEYWORD
nonn,base
AUTHOR
Zhao Hui Du, Jun 23 2023
EXTENSIONS
a(9)-a(18) from Martin Ehrenstein, Jul 31 2023
STATUS
approved