

A083105


Secondorder linear recurrence sequence with a(n) = a(n1) + a(n2).


4



62638280004239857, 49463435743205655, 112101715747445512, 161565151490651167, 273666867238096679, 435232018728747846, 708898885966844525, 1144130904695592371, 1853029790662436896
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(0) = 62638280004239857, a(1) = 49463435743205655. This is a secondorder linear recurrence sequence with a(0) and a(1) coprime that does not contain any primes. It was found by D. E. Knuth in 1990.


REFERENCES

R. L. Graham, Math. Mag. 37, 1964, pp. 322324.
D. E. Knuth, Math. Mag. 63, 1990, pp. 2125.


LINKS

Table of n, a(n) for n=0..8.
Tanya Khovanova, Recursive Sequences
J. W. Nicol, A Fibonaccilike sequence of composite numbers
Prime Puzzles, Problem 31. Fibonacci all composites sequence
Index to sequences with linear recurrences with constant coefficients, signature (1,1).


FORMULA

G.f.: (6263828000423985713174844261034202*x)/(1xx^2). [Colin Barker, Jun 19 2012]


CROSSREFS

Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers), A083103, A083104, A083216, A082411.
Sequence in context: A204189 A051167 A155057 * A246287 A115499 A104837
Adjacent sequences: A083102 A083103 A083104 * A083106 A083107 A083108


KEYWORD

nonn,easy


AUTHOR

Harry J. Smith, Apr 23 2003


STATUS

approved



