

A080923


First differences of A003946.


4



1, 3, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Sum of consecutive pairs of elements of A025192.
The alternating sign sequence with g.f. (1x^2)/(1+3x) gives the diagonal sums of A110168.  Paul Barry, Jul 14 2005
Let M = an infinite lower triangular matrix with the odd integers (1,3,5,...) in every column, with the leftmost column shifted up one row. Then A080923 = lim_{n>inf} M^n.  Gary W. Adamson, Feb 18 2010
a(n+1), n >= 0, with o.g.f. ((1x^2)/(13*x)1)/x = (3x)/(13*x) provides the coefficients in the formal power series for tan(3*x)/tan(x) = (3z)/(13*z) = Sum_{n>=0} a(n+1)*z^n, with z = tan(x)^2. Convergence holds for 0 <= z < 1/3, i.e., x < Pi/6, approximately 0.5235987758. For the numerator and denominator of this o.g.f. see A034867 and A034839, respectively.  Wolfdieter Lang, Jan 18 2013


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (3).


FORMULA

G.f.: (1x^2)/(13*x).
G.f.: 1/(1  3*x + x^2  3*x^3 + x^4  3*x^5 + ...).  Gary W. Adamson, Jan 06 2011
a(n) = 2^3*3^(n2), n >= 2, a(0) = 1, a(1) = 3.  Wolfdieter Lang, Jan 18 2013


MATHEMATICA

CoefficientList[Series[(1  x^2) / (1  3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 05 2013 *)


CROSSREFS

Essentially the same as A005051, A026097 and A083583.
Sequence in context: A052855 A133787 * A118264 A006365 A178543 A188175
Adjacent sequences: A080920 A080921 A080922 * A080924 A080925 A080926


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Feb 26 2003


STATUS

approved



