login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003946 Expansion of (1+x)/(1-3*x). 118
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Coordination sequence for infinite tree with valency 4.

The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001

a(n) is the number of nonreversing random walks of the length of n edges on a two-dimensional square lattice, all beginning at a fixed point P. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005

Binomial transform of {1, 3, 5, 11, 21, 43, ...}, see A001045. Binomial transform is {1, 5, 21, 85, 341, 1365, ...}, see A002450. - Philippe Deléham, Jul 22 2005

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007

Equals row sums of triangle A143865. - Gary W. Adamson, Sep 04 2008

Equals INVERT transform of the odd integers = 1/(1 - x - 3x^2 - 5x^3 - ...). - Gary W. Adamson, Jul 27 2009

a(n) is the number of generalized compositions of n+1 when there are 2 *i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Aug 26 2010

Number of length-n strings of 4 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012

The sequence is the INVERTi transform of A015448: (1, 5, 21, 89, 377,...). - Gary W. Adamson, Aug 06 2016

Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s1(m) and s2(m) the sums of the divisors that are congruent to 1 and 2 (mod 3) respectively. For n>0, the sequence a(n) lists the numbers m such that s1(m) = 5 and s2(m) = 2. - Michel Lagneau, Feb 09 2017

(L(a(n+k)) - 1)/a(n) reduces to the form C/a(n-1), where n > 1, k >= 0, L(a(n)) is the a(n)-th Lucas number and C = (L(a(n+k)) - 1)/3. - Mario C. Enriquez, Apr 01 2017

(L(a(n+k)) - 1)/3 Mod (L(a(n)) - 1)/3 = (L(a(n)) - 1)/3 - 1, where n >= 1, k >= 0 and L(a(n)) is the a(n)-th Lucas number. - Mario C. Enriquez, Apr 01 2017

a(n) is the number of quaternary sequences of length n such that no two consecutive terms have distance 2. - David Nacin, May 31 2017

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 305

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.

Index to divisibility sequences

Index entries for linear recurrences with constant coefficients, signature (3).

Index entries for sequences related to trees

FORMULA

a(n) = floor(4*3^(n-1)). - Michael Somos, Jun 18 2002

a(n) = Sum_{ 0<=k<=n } A029653(n, k)*x^k for x = 2. - Philippe Deléham, Jul 10 2005

The Hankel transform of this sequence is [1,-4,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007

a(n + 1) = (((1 + sqrt(-11))/2)^n + ((1 - sqrt(-11))/2)^n)^2 - (((1 + sqrt(-11))/2)^n - ((1 - sqrt(-11))/2)^n)^2. - Raphie Frank, Dec 07 2015

EXAMPLE

G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...

MAPLE

if n = 0 then 1 else 4*3^(n-1); fi;

MATHEMATICA

Join[{1}, 4*3^Range[0, 30]] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *)

Join[{1}, NestList[3#&, 4, 30]] (* Harvey P. Dale, Nov 30 2011 *)

CoefficientList[Series[(1 + x)/(1 - 3*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dev 11 2012 *)

PROG

(PARI) {a(n) = if( n<1, n==0, 4 * 3^(n-1))}; /* Michael Somos, Jun 18 2002 */

(Maxima) A003946[n]:=if n<1 then 1 else 4*3^(n-1)$

makelist(A003946[n], n, 0, 30); /* Martin Ettl, Oct 29 2012 */

(MAGMA) [1] cat [4*3^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012

(PARI) Vec((1+x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 07 2015

CROSSREFS

Cf. A143865, A029653, A143865, column 4 in A265583A015448.

Sequence in context: A170541 A170589 A170637 A170685 A177881 A290899 A290905

Adjacent sequences:  A003943 A003944 A003945 * A003947 A003948 A003949

KEYWORD

nonn,easy,nice,walk

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Michael Somos, Jun 18 2002

Edited by N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 10:36 EDT 2017. Contains 292518 sequences.