login
A080920
a(n) = 2a(n-1) + 35a(n-2), a(0)=0, a(1)=1.
3
0, 1, 2, 39, 148, 1661, 8502, 75139, 447848, 3525561, 22725802, 168846239, 1133095548, 8175809461, 56009963102, 398173257339, 2756695223248, 19449454453361, 135383241720402, 951497389308439, 6641408238830948
OFFSET
0,3
FORMULA
a(n) = 7^n/12 - (-5)^n/12.
a(n) = Sum{k=1..n, binomial(n, 2k-1)*6^(2(k-1))}.
G.f.: 1/((1+5x)(1-7x)).
a(n+1) = Sum_{k = 0..n} A238801(n,k)*6^k. - Philippe Deléham, Mar 07 2014
MATHEMATICA
Join[{a=0, b=1}, Table[c=2*b+35*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
CoefficientList[Series[1 / ((1 + 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 05 2013 *)
LinearRecurrence[{2, 35}, {0, 1}, 30] (* Harvey P. Dale, Aug 24 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 24 2003
STATUS
approved