login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080924 Jacobsthal gap sequence. 3
0, 1, 3, 1, 15, 1, 63, 1, 255, 1, 1023, 1, 4095, 1, 16383, 1, 65535, 1, 262143, 1, 1048575, 1, 4194303, 1, 16777215, 1, 67108863, 1, 268435455, 1, 1073741823, 1, 4294967295, 1, 17179869183, 1, 68719476735, 1, 274877906943, 1, 1099511627775, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A080925

From Peter Bala, Dec 26 2012: (Start)

Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(1/4) = 0.79761 68651 30459 16010 ... = 1/(1 + 1/(3 + 1/(1 + 1/(15 + 1/(1 + 1/(63 + 1/(1 + 1/(255 + ...)))))))). See A111317. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Index to sequences with linear recurrences with constant coefficients, signature (-1,4,4).

FORMULA

a(2n) = 3*A001045(2n) = 3*A002450(n) = 4^n-1, a(2n+1)=1.

a(n) = (2^n-2*(-1)^n+(-2)^n)/2.

G.f.: x*(1+4*x)/((1+x)*(1+2*x)*(1-2*x)).

E.g.f.: (exp(2*x)-2*exp(-x)+exp(-2*x))/2.

MATHEMATICA

CoefficientList[Series[x (1 + 4 x) / ((1 + x) (1 + 2 x) (1 - 2 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 05 2013 *)

CROSSREFS

Cf. A001045, A002450, A080926, A080927, A111317.

Sequence in context: A214073 A141459 A176727 * A232179 A128042 A108083

Adjacent sequences:  A080921 A080922 A080923 * A080925 A080926 A080927

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Feb 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 04:51 EST 2014. Contains 252175 sequences.