login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080924 Jacobsthal gap sequence. 3
0, 1, 3, 1, 15, 1, 63, 1, 255, 1, 1023, 1, 4095, 1, 16383, 1, 65535, 1, 262143, 1, 1048575, 1, 4194303, 1, 16777215, 1, 67108863, 1, 268435455, 1, 1073741823, 1, 4294967295, 1, 17179869183, 1, 68719476735, 1, 274877906943, 1, 1099511627775, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A080925

From Peter Bala, Dec 26 2012: (Start)

Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(1/4) = 0.79761 68651 30459 16010 ... = 1/(1 + 1/(3 + 1/(1 + 1/(15 + 1/(1 + 1/(63 + 1/(1 + 1/(255 + ...)))))))). See A111317. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Index entries for linear recurrences with constant coefficients, signature (-1,4,4).

FORMULA

a(2n) = 3*A001045(2n) = 3*A002450(n) = 4^n-1, a(2n+1)=1.

a(n) = (2^n-2*(-1)^n+(-2)^n)/2.

G.f.: x*(1+4*x)/((1+x)*(1+2*x)*(1-2*x)).

E.g.f.: (exp(2*x)-2*exp(-x)+exp(-2*x))/2.

MATHEMATICA

CoefficientList[Series[x (1 + 4 x) / ((1 + x) (1 + 2 x) (1 - 2 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 05 2013 *)

CROSSREFS

Cf. A001045, A002450, A080926, A080927, A111317.

Sequence in context: A214073 A141459 A176727 * A232179 A128042 A108083

Adjacent sequences:  A080921 A080922 A080923 * A080925 A080926 A080927

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Feb 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 22:51 EST 2016. Contains 278957 sequences.