login
A077248
Combined Diophantine Chebyshev sequences A077246 and A077244.
3
2, 3, 13, 22, 102, 173, 803, 1362, 6322, 10723, 49773, 84422, 391862, 664653, 3085123, 5232802, 24289122, 41197763, 191227853, 324349302, 1505533702, 2553596653, 11853041763, 20104423922, 93318800402
OFFSET
0,1
COMMENTS
3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077247(n).
Positive values of x (or y) satisfying x^2 - 8xy + y^2 + 35 = 0. - Colin Barker, Feb 08 2014
FORMULA
a(2*k)= A077246(k) and a(2*k+1)= A077244(k), k>=0.
G.f.: (1-x)*(2+x)*(1+2*x)/(1-8*x^2+x^4).
EXAMPLE
13 = a(2) = sqrt((5*A077247(2)^2 + 7)/3) = sqrt((5*10^2 + 7)/3)= sqrt(169) = 13.
MATHEMATICA
CoefficientList[Series[(1 - x) (2 + x) (1 + 2 x)/(1 - 8 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2014 *)
CROSSREFS
Sequence in context: A019226 A138699 A341713 * A282342 A137248 A355438
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved