This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077244 Bisection (odd part) of Chebyshev sequence with Diophantine property. 5
 3, 22, 173, 1362, 10723, 84422, 664653, 5232802, 41197763, 324349302, 2553596653, 20104423922, 158281794723, 1246149933862, 9810917676173, 77241191475522, 608118614128003, 4787707721548502, 37693543158260013, 296760637544531602, 2336391557197992803 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS 3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077243(n). The even part is A077246(n) with Diophantine companion A077245(n). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (8,-1). FORMULA a(n)= (2*T(n+1, 4)+T(n, 4))/3, with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 4)= A001091(n). G.f.: (3-2*x)/(1-8*x+x^2). From Colin Barker, Oct 12 2015: (Start) a(n) = (((4-sqrt(15))^n * (-10+3*sqrt(15)) + (4+sqrt(15))^n * (10+3*sqrt(15)))) / (2*sqrt(15)). a(n) = 8*a(n-1) - a(n-2). (End) EXAMPLE 22 = a(1) = sqrt((5*A077243(1)^2 + 7)/3) = sqrt((5*17^2 + 7)/3) = sqrt(484) = 22. MATHEMATICA LinearRecurrence[{8, -1}, {3, 22}, 25] (* Vincenzo Librandi, Oct 12 2015 *) PROG (PARI) Vec((3-2*x)/(1-8*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015 (MAGMA) I:=[3, 22]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015 CROSSREFS Sequence in context: A074578 A290719 A074576 * A138899 A147855 A278333 Adjacent sequences:  A077241 A077242 A077243 * A077245 A077246 A077247 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 08:12 EST 2017. Contains 294962 sequences.