This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077245 Bisection (even part) of Chebyshev sequence with Diophantine property. 4
 1, 10, 79, 622, 4897, 38554, 303535, 2389726, 18814273, 148124458, 1166181391, 9181326670, 72284431969, 569094129082, 4480468600687, 35274654676414, 277716768810625, 2186459495808586, 17213959197658063 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 3*b(n)^2 - 5*a(n)^2 = 7, with the companion sequence b(n)= A077246(n). The odd part is A077243(n) with Diophantine companion A077244(n). LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (8,-1). FORMULA a(n)= 8*a(n-1) - a(n-2), a(-1) := -2, a(0)=1. a(n)= S(n, 8)+2*S(n-1, 8), with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) := 0 and S(n, 8)= A001090(n+1). G.f.: (1+2*x)/(1-8*x+x^2). a(n)=(1/2)*[4-sqrt(15)]^n-(1/5)*[4-sqrt(15)]^n*sqrt(15)+(1/2)*[4+sqrt(15)]^n+(1/5)*sqrt(15) *[4+sqrt(15)]^n, with n>=0 - Paolo P. Lava, Jul 08 2008 EXAMPLE 5*a(1)^2 + 7 = 5*10^2 + 7 = 507 = 3*13^2 = 3*A077246(1)^2. CROSSREFS Sequence in context: A081905 A016138 A006329 * A036732 A251309 A206764 Adjacent sequences:  A077242 A077243 A077244 * A077246 A077247 A077248 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 12:21 EST 2017. Contains 294891 sequences.