login
A077247
Combined Diophantine Chebyshev sequences A077245 and A077243.
1
1, 2, 10, 17, 79, 134, 622, 1055, 4897, 8306, 38554, 65393, 303535, 514838, 2389726, 4053311, 18814273, 31911650, 148124458, 251239889, 1166181391, 1978007462, 9181326670, 15572819807, 72284431969, 122604550994, 569094129082
OFFSET
0,2
COMMENTS
-5*a(n)^2 + 3*b(n)^2 = 7, with the companion sequence b(n)= A077248(n).
In addition to the comment above: 3*b(n)^2 = 5*a(n-2)*a(n+2) + 112, where b(n) = (a(n+2) - a(n-2))/6 = A077248(n), n >= 2. - Klaus Purath, Aug 12 2021
FORMULA
a(2*k)= A077245(k) and a(2*k+1)= A077243(k), k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-8*x^2+x^4).
From Klaus Purath, Aug 12 2021: (Start)
a(n) = 8*a(n-2) - a(n-4), n >= 4.
a(n) = (a(n-2)*a(n-4) - 168)/a(n-6), n >= 6.
a(n) = (a(n-1)*a(n-2) - 15/2 - 9/2*(-1)^n)/a(n-3), n >= 3. (End)
EXAMPLE
5*a(1)^2 + 7 = 5*4 + 7 = 27 = 3*3^2 = 3*A077248(1)^2.
MATHEMATICA
LinearRecurrence[{0, 8, 0, -1}, {1, 2, 10, 17}, 30] (* Harvey P. Dale, Nov 12 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved