login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077251 Bisection (even part) of Chebyshev sequence with Diophantine property. 6
1, 12, 119, 1178, 11661, 115432, 1142659, 11311158, 111968921, 1108378052, 10971811599, 108609737938, 1075125567781, 10642645939872, 105351333830939, 1042870692369518, 10323355589864241, 102190685206272892, 1011583496472864679, 10013644279522373898 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

b(n)^2 - 24*a(n)^2 = 25, with the companion sequence b(n) = A077409(n).

The odd part is A077249(n) with Diophantine companion A077250(n).

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (10,-1).

FORMULA

a(n) = 10*a(n-1)- a(n-2), a(-1)=-2, a(0)=1.

a(n) = S(n, 10)+2*S(n-1, 10), with S(n, x) = U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(n, 10)= A004189(n+1).

a(n) = sqrt((A077409(n)^2 - 25)/24).

G.f.: (1+2*x)/(1-10*x+x^2).

EXAMPLE

24*a(1)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077409(1)^2.

MATHEMATICA

CoefficientList[Series[(2 z + 1)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)

PROG

(PARI) Vec((1+2*x)/(1-10*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 11 2011

(PARI) a(n)=([0, 1; -1, 10]^n*[1; 12])[1, 1] \\ Charles R Greathouse IV, Jun 15 2015

CROSSREFS

Sequence in context: A163950 A025132 A001712 * A075622 A153054 A075366

Adjacent sequences:  A077248 A077249 A077250 * A077252 A077253 A077254

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 18:46 EDT 2017. Contains 284137 sequences.