This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077251 Bisection (even part) of Chebyshev sequence with Diophantine property. 6
 1, 12, 119, 1178, 11661, 115432, 1142659, 11311158, 111968921, 1108378052, 10971811599, 108609737938, 1075125567781, 10642645939872, 105351333830939, 1042870692369518, 10323355589864241, 102190685206272892, 1011583496472864679, 10013644279522373898 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS b(n)^2 - 24*a(n)^2 = 25, with the companion sequence b(n) = A077409(n). The odd part is A077249(n) with Diophantine companion A077250(n). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (10,-1). FORMULA a(n) = 10*a(n-1)- a(n-2), a(-1)=-2, a(0)=1. a(n) = S(n, 10)+2*S(n-1, 10), with S(n, x) = U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(n, 10)= A004189(n+1). a(n) = sqrt((A077409(n)^2 - 25)/24). G.f.: (1+2*x)/(1-10*x+x^2). EXAMPLE 24*a(1)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077409(1)^2. MATHEMATICA CoefficientList[Series[(2 z + 1)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *) PROG (PARI) Vec((1+2*x)/(1-10*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 11 2011 (PARI) a(n)=([0, 1; -1, 10]^n*[1; 12])[1, 1] \\ Charles R Greathouse IV, Jun 15 2015 CROSSREFS Sequence in context: A025132 A001712 A285232 * A289542 A075622 A153054 Adjacent sequences:  A077248 A077249 A077250 * A077252 A077253 A077254 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.