login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072481
a(n) = Sum_{k=1..n} Sum_{d=1..k} (k mod d).
7
0, 0, 0, 1, 2, 6, 9, 17, 25, 37, 50, 72, 89, 117, 148, 184, 220, 271, 318, 382, 443, 513, 590, 688, 773, 876, 988, 1113, 1237, 1388, 1526, 1693, 1860, 2044, 2241, 2459, 2657, 2890, 3138, 3407, 3665, 3962, 4246, 4571, 4899, 5238, 5596, 5999, 6373, 6787, 7207
OFFSET
0,5
COMMENTS
Previous name was: Sums of sums of remainders when dividing n by k, 0<k<=n.
Partial sums of A004125.
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{d=1..k}(k mod d).
a(n) = A000330(n) - A175254(n), n >= 1. - Omar E. Pol, Aug 12 2015
G.f.: x^2/(1-x)^4 - (1-x)^(-2) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - Robert Israel, Aug 13 2015
a(n) ~ (1 - Pi^2/12)*n^3/3. - Vaclav Kotesovec, Sep 25 2016
MAPLE
N:= 200: # to get a(0) to a(N)
S:= series(add(k*x^(2*k)/(1-x^k), k=1..floor(N/2))/(1-x)^2, x, N+1):
seq((n^3-n)/6 - coeff(S, x, n), n=0..N); # Robert Israel, Aug 13 2015
MATHEMATICA
a[n_] := n(n+1)(2n+1)/6 - Sum[DivisorSigma[1, k] (n-k+1), {k, 1, n}];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 08 2019, after Omar E. Pol *)
PROG
(Python)
for n in range(99):
s = 0
for k in range(1, n+1):
for d in range(1, k+1):
s += k % d
print(str(s), end=', ')
(Python)
from math import isqrt
def A072481(n): return (n*(n+1)*((n<<1)+1)-((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1)-sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1, s+1)))//6 # Chai Wah Wu, Oct 22 2023
(PARI) a(n) = sum(k=1, n, sum(d=1, k, k % d)); \\ Michel Marcus, Feb 11 2014
CROSSREFS
Sequence in context: A254057 A257083 A054974 * A032471 A358258 A156222
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 02 2002
EXTENSIONS
New name and a(0) from Alex Ratushnyak, Feb 10 2014
STATUS
approved