This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156222 A triangle sequence of the Carlitz q-Euler number type: q=2;p(x,n)=Product[(1 - x^k)/(1 - x), {k, 1, n}]; Q(x, n) = (-1/q)*Q[x - 1, n] + (p[q, 2]/q)*p[2, x - 1]^n 1
 -2, -6, 9, -18, 21, -15, -54, 57, -51, 375, -162, 165, -159, 1131, 4666413, -486, 489, -483, 3399, 98015025, 148865383434975, -1458, 1461, -1455, 10203, 2058376701, 46892624598373299, 83234757492356072395126701, -4374, 4377, -4371, 30615 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This result is an attempt to get the Carlitz q-Euler number recursion to work at q=2. Row sums are: {-2, 3, -12, 327, 4667388, 148865481452919, 83234757539248699051885452, 6403107722784357842299544181680812061276247, 533167131870041204624565122306522559603976943838556766587936111548, 379814469970935772396967354473544697867037238712728549478618581331342218457211 097728768031486199, 18372455397191678019687937935475502510673821112760290710753555455473664707268317382457368748481529925946011336353217348256796830858732,...} REFERENCES L. Carlitz,q-Bernoulli numbers and polynomials,Duke Math. J. Volume 15, Number 4 (1948), 987-1000.http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1077475200 LINKS FORMULA p(x,n)=Product[(1 - x^k)/(1 - x), {k, 1, n}]; Q(x, n) = (-1/q)*Q[x - 1, n] + (p[q, 2]/q)*p[2, x - 1]^n EXAMPLE {-2}, {-6, 9}, {-18, 21, -15}, {-54, 57, -51, 375}, {-162, 165, -159, 1131, 4666413}, {-486, 489, -483, 3399, 98015025, 148865383434975}, {-1458, 1461, -1455, 10203, 2058376701, 46892624598373299, 83234757492356072395126701}, {-4374, 4377, -4371, 30615, 43226094369, 14771177353650155631, 812787407355992348787877344369, 6403107722783545054892173418154627307655631}, {-13122, 13125, -13119, 91851, 907748532813, 4652920879108270217187, 7936869032970852911892907767282813, 3939159855518315085924426024841736611828307717187, 533167131870041200685405266788199536810517943490987381835842282813}, MATHEMATICA Clear[Q, e, p, n, x]; p[x_, n_] := Product[(1 - x^k)/(1 - x), {k, 1, n}]; q = 2; e[0] = 1; e[n_] := e[n] = -q*(q*e[0] + 1)^n; Table[e[n], {n, 0, 30}]; Q[0, n] := e[n]; Q[x, 0] := 1; Q[x_, n_] := Q[x, n] = (-1/q)*Q[x - 1, n] + (p[q, 2]/q)*p[2, x - 1]^n; a0 = Table[Table[ExpandAll[2^x*Q[x, n]], {x, 0, m}] /. n -> m, {m, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A054974 A072481 A032471 * A002886 A028724 A222048 Adjacent sequences:  A156219 A156220 A156221 * A156223 A156224 A156225 KEYWORD uned,sign AUTHOR Roger L. Bagula, Feb 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 19 09:21 EST 2018. Contains 318246 sequences. (Running on oeis4.)