login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072478 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives numerator of S_n. 8
0, 2, 2, 4, 2, 8, 1, 16, 1, 32, 1, 64, 1, 128, 1, 256, 1, 512, 1, 1024, 1, 2048, 1, 4096, 1, 8192, 1, 16384, 1, 32768, 1, 65536, 1, 131072, 1, 262144, 1, 524288, 1, 1048576, 1, 2097152, 1, 4194304, 1, 8388608, 1, 16777216, 1, 33554432, 1, 67108864, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ...

Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346.

a(2*n-1) = 2^n and for n>2 a(2*n)=1.

Denominator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. - Jean-François Alcover, Apr 23 2013

From Ilya Gutkovskiy, Aug 02 2016: (Start)

Numerator of n/Gamma(n/2+1).

More generally, the ordinary generating function for the surface area of the n-dimensional sphere of radius r is 2*x*(1 + exp(Pi*r^2*x^2)*Pi*r*x + exp(Pi*r^2*x^2)*Pi*r*erf(sqrt(Pi)*r*x)*x) =  2*x + 2*Pi*r*x^2 + 4*Pi*r^2*x^3 + 2*Pi^2*r^3*x^4 + (8*Pi^2*r^4/3)*x^5 + Pi^3*r^5*x^6 + ... (End)

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22. - N. J. A. Sloane, Sep 04 2012

Eric Weisstein's World of Mathematics, Ball

Eric Weisstein's World of Mathematics, Hypersphere

Eric Weisstein's World of Mathematics, Four-Dimensional Geometry

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).

FORMULA

From Colin Barker, Sep 04 2012: (Start)

a(n) = 3*a(n-2)-2*a(n-4) for n>4.

G.f.: x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7) / (1-3*x^2+2*x^4).

(End)

From Colin Barker, Aug 01 2016: (Start)

a(n) = (1+(-1)^n-2^((1+n)/2)*(-1+(-1)^n))/2 for n>4.

a(n) = 1 for n>4 and even.

a(n) = 2^((n+1)/2) for n>4 and odd.

(End)

EXAMPLE

Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...

MATHEMATICA

f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 52}]

CoefficientList[Series[x (2 + 2 x - 2 x^2 - 4 x^3 - x^5 + 2 x^7)/(1 - 3 x^2 + 2 x^4), {x, 0, 52}], x] (* Michael De Vlieger, Aug 01 2016 *)

PROG

(PARI) concat(0, Vec(x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7)/(1-3*x^2+2*x^4) + O(x^100))) \\ Colin Barker, Aug 01 2016

CROSSREFS

Cf. A072479. A072478(n)/A072479(n) = n*A072345(n)/A072346(n).

Sequence in context: A003980 A132801 A270366 * A190014 A100577 A018818

Adjacent sequences:  A072475 A072476 A072477 * A072479 A072480 A072481

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane, Aug 02 2002

EXTENSIONS

More terms from Robert G. Wilson v, Aug 18 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 04:36 EST 2016. Contains 278960 sequences.