This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072479 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives denominator of S_n. 8
 1, 1, 1, 1, 1, 3, 1, 15, 3, 105, 12, 945, 60, 10395, 360, 135135, 2520, 2027025, 20160, 34459425, 181440, 654729075, 1814400, 13749310575, 19958400, 316234143225, 239500800, 7905853580625, 3113510400, 213458046676875, 43589145600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ... Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346. Numerator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. [Jean-François Alcover, Apr 23 2013] REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19. Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; http://www.advancesindifferenceequations.com/content/2012/1/22 - From N. J. A. Sloane, Sep 04 2012 LINKS Eric Weisstein's World of Mathematics, Ball Eric Weisstein's World of Mathematics, Hypersphere Eric Weisstein's World of Mathematics, Four-Dimensional Geometry EXAMPLE Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ... MATHEMATICA f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Denominator[ f[n]], {n, 0, 30} ] CROSSREFS Cf. A072478. A072478(n)/A072479(n) = n*A072345(n)/A072346(n). Sequence in context: A085569 A261671 A198148 * A264772 A263917 A131440 Adjacent sequences:  A072476 A072477 A072478 * A072480 A072481 A072482 KEYWORD nonn,frac,easy AUTHOR N. J. A. Sloane, Aug 02 2002 EXTENSIONS More terms from Robert G. Wilson v, Aug 18 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.