login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072479
Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives denominator of S_n.
8
1, 1, 1, 1, 1, 3, 1, 15, 3, 105, 12, 945, 60, 10395, 360, 135135, 2520, 2027025, 20160, 34459425, 181440, 654729075, 1814400, 13749310575, 19958400, 316234143225, 239500800, 7905853580625, 3113510400, 213458046676875, 43589145600
OFFSET
0,6
COMMENTS
Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ...
Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346.
Numerator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. [Jean-François Alcover, Apr 23 2013]
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.
Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22; http://www.advancesindifferenceequations.com/content/2012/1/22 - From N. J. A. Sloane, Sep 04 2012
LINKS
Eric Weisstein's World of Mathematics, Ball
Eric Weisstein's World of Mathematics, Hypersphere
Eric Weisstein's World of Mathematics, Four-Dimensional Geometry
EXAMPLE
Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...
MATHEMATICA
f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Denominator[ f[n]], {n, 0, 30} ]
CROSSREFS
Cf. A072478. A072478(n)/A072479(n) = n*A072345(n)/A072346(n).
Sequence in context: A286644 A290862 A290030 * A264772 A263917 A324428
KEYWORD
nonn,frac,easy
AUTHOR
N. J. A. Sloane, Aug 02 2002
EXTENSIONS
More terms from Robert G. Wilson v, Aug 18 2002
STATUS
approved