login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070428
Number of perfect powers (A001597) not exceeding 10^n.
15
1, 4, 13, 41, 125, 367, 1111, 3395, 10491, 32670, 102231, 320990, 1010196, 3184138, 10046921, 31723592, 100216745, 316694005, 1001003332, 3164437425, 10004650118, 31632790244, 100021566157, 316274216762, 1000100055684
OFFSET
0,2
COMMENTS
In the programs for this sequence, 4*n can be replaced by the smaller floor(n*log(10)/log(2)). - T. D. Noe, Nov 17 2006
REFERENCES
The Dominion (Wellington, NZ), 'wtd sell', 9 Nov. 1991.
sci.math, powers not exceeding n. nz science monthly advt, March 1993, 1:80 integers 1..10000 is perfect square or higher power.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..1999 (terms 0..999 from Robert G. Wilson v)
Eric Weisstein's World of Mathematics, Perfect Power
FORMULA
a(n) ~ sqrt(10^n).
EXAMPLE
a(1) = 4 because the powers 1, 4, 8, 9 do not exceed 10^1.
a(2) = 13 because 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81 & 100, are the only perfect power numbers less than or equal to 100.
MATHEMATICA
f[n_] := 1 - Sum[ MoebiusMu[x]*Floor[10^(n/x) - 1], {x, 2, n*Log2[10]}]; Array[f, 25, 0] (* Robert G. Wilson v, May 22 2009; modified Aug 04 2014 *)
PROG
(PARI) for(n=0, 25, print1(sum(x=2, 4*n, -moebius(x)*(floor(10^(n/x)-1)))+1, ", ")); \\ Slightly modified by Jinyuan Wang, Mar 02 2020
(Python)
from sympy import mobius, integer_nthroot
def A070428(n): return int(1-sum(mobius(x)*(integer_nthroot(10**n, x)[0]-1) for x in range(2, (10**n).bit_length()))) # Chai Wah Wu, Aug 13 2024
CROSSREFS
Cf. A001597.
Cf. A089579, A089580 (number of perfect powers (not including 1) < 10^n).
Sequence in context: A213496 A220926 A077284 * A320563 A368344 A268989
KEYWORD
easy,nonn
AUTHOR
Donald S. McDonald, May 15 2002
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2002
Edited and extended by Robert G. Wilson v, Oct 11 2002
STATUS
approved