login
A070427
a(n) = 7^n mod 45.
1
1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 7, 4, 28
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-12).
G.f.: ( -1 -7*x -4*x^2 -28*x^3 -16*x^4 -22*x^5 -19*x^6 -43*x^7 -31*x^8 -37*x^9 -34*x^10 -13*x^11 ) / ( (x-1)*(1+x+x^2)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1) ). (End)
MATHEMATICA
PowerMod[7, Range[0, 80], 45] (* or *) PadRight[{}, 80, {1, 7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13}] (* Harvey P. Dale, Jan 11 2014 *)
PROG
(Sage) [power_mod(7, n, 45) for n in range(0, 76)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n)=lift(Mod(7, 45)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(7, n, 45): n in [0..100]]; // Bruno Berselli, Mar 22 2016
CROSSREFS
Sequence in context: A213564 A282449 A282608 * A140721 A281750 A282365
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved