|
|
A070430
|
|
a(n) = n^2 mod 5.
|
|
12
|
|
|
0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Equivalently n^6 mod 5. - Zerinvary Lajos, Nov 06 2009
|
|
LINKS
|
Table of n, a(n) for n=0..100.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
|
|
FORMULA
|
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-5).
G.f.: -x*(1+x)*(x^2+3*x+1) / ( (x-1)*(1+x+x^2+x^3+x^4) ). (End)
|
|
MATHEMATICA
|
Table[Mod[n^2, 5], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *)
PowerMod[Range[0, 200], 2, 5] (* G. C. Greubel, Mar 22 2016 *)
|
|
PROG
|
(Sage) [power_mod(n, 2, 5)for n in range(0, 101)] # Zerinvary Lajos, Nov 06 2009
(Sage) [power_mod(n, 6, 5)for n in range(0, 101)] # Zerinvary Lajos, Nov 06 2009
(PARI) a(n)=n^2%5 \\ Charles R Greathouse IV, Sep 28 2015
|
|
CROSSREFS
|
Cf. A053879, A070431, A070432.
Sequence in context: A260043 A185057 A048152 * A336302 A163353 A164612
Adjacent sequences: A070427 A070428 A070429 * A070431 A070432 A070433
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, May 12 2002
|
|
STATUS
|
approved
|
|
|
|