This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068307 From Goldbach problem: number of decompositions of n into a sum of three primes. 40
 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 4, 2, 3, 2, 5, 2, 5, 3, 5, 3, 7, 3, 7, 2, 6, 3, 9, 2, 8, 4, 9, 4, 10, 2, 11, 3, 10, 4, 12, 3, 13, 4, 12, 5, 15, 4, 16, 3, 14, 5, 17, 3, 16, 4, 16, 6, 19, 3, 21, 5, 20, 6, 20, 2, 22, 5, 21, 6, 22, 5, 28, 5, 24, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS For even n>2, a(n) = A061358(n-2). - Reinhard Zumkeller, Aug 08 2009 Vinogradov proved that every sufficiently large odd number is the sum of three primes. - T. D. Noe, Mar 27 2013 The two Helfgott papers show that every odd number greater than 5 is the sum of three primes (this is the Odd Goldbach Conjecture). - T. D. Noe, May 14 2013, N. J. A. Sloane, May 18 2013 LINKS T. D. Noe and Robert G. Wilson v, Table of n, a(n) for n=1..36000 (first 10000 terms from T. D. Noe) H. A. Helfgott, Minor arcs for Goldbach's problem, arXiv:1205.5252 [math.NT], 2012. H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv:1305.2897 [math.NT], 2013. H. A. Helfgott, The ternary Goldbach conjecture is true, arxiv:1312.7748 [math.NT], 2013. H. A. Helfgott, The ternary Goldbach problem, arXiv:1404.2224 [math.NT], 2014. Yannick Saouter, Checking the odd Goldbach conjecture up to 10^20, Math. Comp. 67 (222) (1998) 863-866. Eric W. Weinstein, MathWorld: Vinogradov's Theorem Wikipedia, Goldbach's conjecture. EXAMPLE a(6) = 1 because 6 = 2+2+2, a(9) = 2 because 9 = 2+2+5 = 3+3+3, a(15) = 3 because 15 = 2+2+11 = 3+5+7 = 5+5+5, a(17) = 4 because 17 = 2+2+13 = 3+3+11 = 3+7+7 = 5+5+7. - Zak Seidov, Jun 29 2017 MATHEMATICA f[n_] := Block[{c = 0, lmt = PrimePi@ Floor[n/2], p, q}, Do[p = Prime@ i; q = Prime@ j; r = n - p - q; If[ PrimeQ@ r && r >= p, c++ ], {i, lmt}, {j, i}]; c]; Array[f, 91] (* Robert G. Wilson v, Apr 13 2008 *) PROG (PARI) a(n)=my(s); forprime(p=(n+2)\3, n-4, forprime(q=(n-p+1)\2, min(n-p-2, p), if(isprime(n-p-q), s++))); s \\ Charles R Greathouse IV, Jun 29 2017 (Python) from sympy import isprime, primerange, floor def a(n):     s=0     for p in primerange(floor((n + 2)/3), n - 3):         for q in primerange(floor((n - p + 1)/2), min(n - p - 2, p) + 1):             if isprime(n - p - q): s+=1     return s print [a(n) for n in xrange(1, 101)] # Indranil Ghosh, Jul 01 2017, after PARI code by Charles R Greathouse IV CROSSREFS Bisections: A045917, A054860. Cf. A002375, A007963, A061358, A059998. First occurrence: A139321. Records: A139322. Column k=3 of A117278. Sequence in context: A001227 A060764 A105149 * A158946 A223853 A023645 Adjacent sequences:  A068304 A068305 A068306 * A068308 A068309 A068310 KEYWORD easy,nonn AUTHOR Naohiro Nomoto, Feb 24 2002 EXTENSIONS More terms from Vladeta Jovovic, Mar 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.