

A068310


n^2  1 divided by its largest square divisor.


7



3, 2, 15, 6, 35, 3, 7, 5, 11, 30, 143, 42, 195, 14, 255, 2, 323, 10, 399, 110, 483, 33, 23, 39, 3, 182, 87, 210, 899, 15, 1023, 17, 1155, 34, 1295, 38, 1443, 95, 1599, 105, 1763, 462, 215, 506, 235, 138, 47, 6, 51, 26, 2703, 78, 2915, 21, 3135, 203, 3363, 870, 3599
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

In other words, squarefree part of n^21.
Least m for which x^2  m*y^2 = 1 has a solution with x = n.
a(n) = A005563(n1) / A008833(n). [Reinhard Zumkeller, Nov 26 2011]


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 2..10000


EXAMPLE

a(6) = 35, as 6^2  1 = 35 itself is squarefree.
7^21 = 48, whose largest square divisor is 16, so a(7) = 48/16=3.


MATHEMATICA

a[n_] := Times@@(#[[1]] ^ Mod[ #[[2]], 2]&/@FactorInteger[n^21])
Table[(n^21)/Max[Select[Divisors[n^21], IntegerQ[Sqrt[#]]&]], {n, 2, 60}] (* Harvey P. Dale, Dec 08 2019 *)


PROG

(PARI) a(n) = core(n*n  1).  David Wasserman, Mar 07 2005
(Haskell)
a068310 n = f 1 $ a027746_row (n^2  1) where
f y [] = y
f y [p] = y*p
f y (p:ps'@(p':ps))  p == p' = f y ps
 otherwise = f (y*p) ps'
 Reinhard Zumkeller, Nov 26 2011


CROSSREFS

a(n) = A007913(n^21).
Cf. A002350, A067872, A033314, A027746, A175607.
Sequence in context: A328282 A332215 A086485 * A033314 A070260 A142705
Adjacent sequences: A068307 A068308 A068309 * A068311 A068312 A068313


KEYWORD

easy,nice,nonn


AUTHOR

Lekraj Beedassy, Feb 25 2002


EXTENSIONS

Edited by Dean Hickerson, Mar 19 2002
Entry revised by N. J. A. Sloane, Apr 27 2007


STATUS

approved



