login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061358 Number of ways of writing n = p+q with p, q primes and p >= q. 48
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 3, 0, 3, 1, 3, 0, 2, 0, 3, 1, 2, 1, 4, 0, 4, 0, 2, 1, 3, 0, 4, 1, 3, 1, 4, 0, 5, 1, 4, 0, 3, 0, 5, 1, 3, 0, 4, 0, 6, 1, 3, 1, 5, 0, 6, 0, 2, 1, 5, 0, 6, 1, 5, 1, 5, 0, 7, 0, 4, 1, 5, 0, 8, 1, 5, 0, 4, 0, 9, 1, 4, 0, 5, 0, 7, 0, 3, 1, 6, 0, 8, 1, 5, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

For an odd number n, a(n) = 0 if n-2 is not a prime else a(n) = 1.

For n>1, a(2n) is at least 1, according to Goldbach's conjecture.

a(A014092(n)) = 0; a(A014091(n)) > 0; a(A067187(n)) = 1. - Reinhard Zumkeller, Nov 22 2004

Number of partitions of n into two primes.

Number of unordered ways of writing n as the sum of two primes.

a(2*n) = A068307(2*n+2). [Reinhard Zumkeller, Aug 08 2009]

4*a(n) is the total number of divisors of all primes p and q such that n=p+q and p>=q. - Wesley Ivan Hurt, Mar 05 2016

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

Index entries for sequences related to Goldbach conjecture

FORMULA

G.f.: Sum_{j>0} Sum_{i=1..j} x^(p(i)+p(j)), where p(k) is the k-th prime. - Emeric Deutsch, Apr 03 2006

A065577(n) = a(10^n).

From Wesley Ivan Hurt, Jan 04 2013: (Start)

a(n) = Sum_{i=1..floor(n/2)} A010051(i) * A010051(n-i).

a(n) = Sum_{i=1..floor(n/2)} floor((A010051(i) + A010051(n-i))/2). (End)

EXAMPLE

a(22) = 3 because 22 can be written as 3+19, 5+17 and 11+11.

MAPLE

g:=sum(sum(x^(ithprime(i)+ithprime(j)), i=1..j), j=1..30): gser:=series(g, x=0, 110): seq(coeff(gser, x, n), n=0..105); # Emeric Deutsch, Apr 03 2006

MATHEMATICA

a[n_] := Length[Select[n - Prime[Range[PrimePi[n/2]]], PrimeQ]]; Table[a[n], {n, 0, 100}] (* Paul Abbott, Jan 11 2005 *)

PROG

(PARI) a(n)=my(s); forprime(q=2, n\2, s+=isprime(n-q)); s \\ Charles R Greathouse IV, Mar 21 2013

CROSSREFS

a(2n) is A045917.

Cf. A067187, A067188, A067189, A067190, A067191, A063610, A073610, A107318.

Column k=2 of A117278.

Sequence in context: A055639 A156542 A066360 * A025866 A259920 A048881

Adjacent sequences:  A061355 A061356 A061357 * A061359 A061360 A061361

KEYWORD

nonn,easy

AUTHOR

Amarnath Murthy, Apr 28 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001

Comments edited by Zak Seidov, May 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 08:37 EDT 2017. Contains 287015 sequences.