login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067372
Integers expressible as the sum of (at least two) consecutive primes in at least 2 ways.
14
36, 41, 60, 72, 83, 90, 100, 112, 119, 120, 138, 143, 152, 180, 187, 197, 199, 204, 210, 221, 223, 228, 240, 251, 258, 276, 281, 287, 300, 304, 311, 323, 330, 340, 371, 372, 384, 390, 395, 401, 408, 410, 434, 439, 456, 462, 473, 480, 491, 492, 508, 510, 533
OFFSET
1,1
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10841 (terms <= 10^5, first 1000 terms from Donovan Johnson)
P. De Geest, WONplate 122
C. Rivera, Puzzle 46
Eric Weisstein's World of Mathematics, Prime Sums
FORMULA
A084143(a(n)) > 1. - Ray Chandler, Sep 20 2023
EXAMPLE
36 = (17 + 19) = (5 + 7 + 11 + 13) or (#2,17) (#4,5).
MATHEMATICA
m=5!; lst={}; Do[p=Prime[a]; Do[p+=Prime[b]; If[p<Prime[m]*3+8, AppendTo[lst, p]], {b, a+1, m, 1}], {a, m}]; lst1=Sort[lst]; lst={}; Do[If[lst1[[n]]==lst1[[n+1]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1]-1}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Aug 15 2009 *)
PROG
(PARI) upto(n) = {my(s = 0, pr = List([0]), l = List(), res = List()); forprime(p = 2, n + 100, s+=p; listput(pr, s) ); for(i = 3, #pr, for(j = 2, i-1, if(pr[i] - pr[i-j] <= n, listput(l, pr[i] - pr[i-j]) , next(2) ) ) ); listsort(l); for(i = 2, #l, if(l[i-1] == l[i], listput(res, l[i]) ) ); Set(res); } \\ David A. Corneth, Aug 22 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Feb 04 2002
EXTENSIONS
Offset corrected by Donovan Johnson, Nov 14 2013
STATUS
approved