login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067369 Weight of the alternating group (A_n) in transpositions. 3
0, 0, 4, 22, 166, 1266, 11166, 106128, 1122192, 12809520, 159451920, 2128973760, 30594214080, 468275713920, 7641089769600, 131971588761600, 2412294180710400, 46422407927347200, 940023724189132800, 19949344876532736000, 443393309963068416000, 10288553164881868800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Sequences A067369, A067370 and A067318 are related: A067318 = A067369 + A067370. A067318 counts transpositions in the symmetric group, denoted S_n. One can think of the transpositions in S_n as being split between the alternating group A_n and its complement, which we call the periphery and denote P_N. For n >= 3, A067369 v(P_N) and A067370 v(A_n) always differ by (n-2)!. When n is odd, v(A_n) is larger; when n is even, v(P_N) is larger. This gives new meaning to the name alternating group. The average weight of permutation in A_n converges with the average weight for a permutation in P_N at infinity.

LINKS

Charlie Neder and Muniru A Asiru, Table of n, a(n) for n = 1..445

FORMULA

a(n) = a(n-1) + [(n-1)!/2]*[vbar(P_N-1)+1]*[n-1)] where vbar(P_N) is the average weight of a permutation in P_N, the periphery of A_n. vbar(P_N-1) is p(n-1)/(n-1)!2 where p(n) is from sequence A067370.

From Vladeta Jovovic, Feb 02 2003: (Start)

a(n) = (1/2)*((-1)^(n+1)*(n-2)! + n*n! - abs(Stirling1(n+1, 2))), n > 1.

E.g.f.: (1/2)*(-(1+x)*log(1+x) + x + x/(1-x)^2 + log(1-x)/(1-x) + 2). (End)

MAPLE

seq(coeff(series(factorial(n)*(1/2)*(-(1+x)*log(1+x)+x+x/(1-x)^2+log(1-x)/(1-x)+2), x, n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Dec 15 2018

MATHEMATICA

a[n_] := 1/2*((-1)^(n+1)*(n-2)!+n*n!-Abs[StirlingS1[n+1, 2]]); a[1]=0; Table[a[n], {n, 1, 20}] (* Jean-Fran├žois Alcover, Jan 12 2015, after Vladeta Jovovic *)

PROG

(PARI) a(n)={if(n < 2, 0, 1/2*((-1)^(n+1)*(n-2)!+n*n!-abs(stirling(n+1, 2, 1))))} \\ Andrew Howroyd, Dec 14 2018

(GAP) Concatenation([0], List([2..25], n->(1/2)*((-1)^(n+1)*Factorial(n-2)+n*Factorial(n)-AbsInt(Stirling1(n+1, 2))))); # Muniru A Asiru, Dec 15 2018

CROSSREFS

Cf. A067370, A067318.

Sequence in context: A302908 A187123 A121397 * A247249 A113351 A001827

Adjacent sequences:  A067366 A067367 A067368 * A067370 A067371 A067372

KEYWORD

easy,nice,nonn

AUTHOR

Nick Hann (nickhann(AT)aol.com), Jan 20 2002

EXTENSIONS

More terms from Vladeta Jovovic, Feb 02 2003

a(20)-a(22) from Charlie Neder, Dec 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 08:06 EDT 2019. Contains 324229 sequences. (Running on oeis4.)