This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067370 The weight of the periphery of the alternating group, denoted v(P_N). 3
 0, 1, 3, 24, 160, 1290, 11046, 106848, 1117152, 12849840, 159089040, 2132602560, 30554297280, 468754715520, 7634862748800, 132058767052800, 2410986506342400, 46443330717235200, 939668036761036800, 19955747250238464000, 443271664862659584000, 10290986066890045440000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Sequences A067369, A067370 and A067318 are related. A067318 counts transpositions in the symmetric group, denoted S_n. One can think of the transpositions in S_n as being split between the alternating group A_n and its complement, which we call the periphery and denote P_N. For n >= 3, A067369 v(P_N) and A067370 v(A_n) always differ by (n-2)!. When n is odd, v(A_n) is larger; when n is even, v(P_N) is larger. This gives new meaning to the name alternating group. The average weight of a permutation in A_n converges with the average weight for a permutation in P_N at infinity. LINKS Charlie Neder and Muniru A Asiru, Table of n, a(n) for n = 1..446 FORMULA v(P_N) = p(n) = p(n-1) + floor((n-1)!/2)*(vbar(A_n-1)+1)*((n-1)) where vbar(A_n) is the average weight of a permutation in A_n, the alternating group. vbar(A_n-1) is a(n-1)/(n-1)!/2 where a(n) is from the sequence A067369. From Vladeta Jovovic, Feb 02 2003: (Start) a(n) = (1/2)*((-1)^n*(n-2)! + n*n! - abs(Stirling1(n+1, 2))), n > 1. E.g.f.: (1/2)*((1+x)*log(1+x) - x + x/(1-x)^2 + log(1-x)/(1-x)). (End) EXAMPLE Let n=4. v(S_n)=46, see A067318. (n-2)! = 2! = 2. n is even so P_N is larger than A_n. v(P_N) = 23 + 1 = 24. v(A_n) = 23 - 1 = 22, see A067369. Let n=5. v(S_n)=326. (n-2)! = 3! = 6. n is odd so A_n is larger than P_N. v(P_N) = 163 - 3 = 160. v(A_n) = 163 + 3 = 166. MAPLE seq(coeff(series(factorial(n)*(1/2)*((1+x)*log(1+x)-x+x/(1-x)^2+log(1-x)/(1-x)), x, n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Dec 15 2018 MATHEMATICA a[n_] := (n*n! + (-1)^n*((n-2)! + StirlingS1[n+1, 2]))/2; a[1] = 0; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, May 23 2012, after Vladeta Jovovic *) PROG (PARI) a(n)={if(n < 2, 0, (1/2)*((-1)^n*(n-2)! + n*n! - abs(stirling(n+1, 2, 1))))} \\ Andrew Howroyd, Dec 14 2018 (GAP) Concatenation([0], List([2..25], n->(1/2)*((-1)^n*Factorial(n-2)+n*Factorial(n)-AbsInt(Stirling1(n+1, 2))))); # Muniru A Asiru, Dec 15 2018 CROSSREFS Cf. A067369 A067318. Sequence in context: A119581 A240916 A006292 * A322237 A289795 A094432 Adjacent sequences:  A067367 A067368 A067369 * A067371 A067372 A067373 KEYWORD easy,nice,nonn AUTHOR Nick Hann (nickhann(AT)aol.com), Jan 20 2002 EXTENSIONS Corrected and extended by Vladeta Jovovic, Feb 02 2003 a(20)-a(22) from Charlie Neder, Dec 14 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 11:12 EDT 2019. Contains 324152 sequences. (Running on oeis4.)