login
A067371
Arithmetic derivatives of 3-smooth numbers.
2
0, 1, 1, 4, 5, 12, 6, 16, 32, 21, 44, 27, 80, 60, 112, 81, 192, 156, 108, 272, 216, 448, 384, 297, 640, 540, 405, 1024, 912, 756, 1472, 1296, 1053, 2304, 2112, 1836, 1458, 3328, 3024, 2592, 5120, 4800, 4320, 3645, 7424, 6912, 6156, 11264, 5103, 10752
OFFSET
1,4
LINKS
FORMULA
A003415(2^i+3^j) = (3*i + 2*j) * 2^(i-1) * 3^(j-1), i, j >=0.
a(n) = A003415(A003586(n)).
EXAMPLE
a(18) = A003415(A003586(18)) = A003415(72) = A003415(2^3*3^2) = (3*3+2*2)*2^(3-1)*3^(2-1) = (9+4)*2^2*3^1 = 13*4*3 = 156.
a(27) = A003415(A003586(27)) = A003415(243) = A003415(2^0*3^5) = (3*0+2*5)*2^(0-1)*3^(5-1) = ((0+10)/2)*3^4 = 5*81 = 405.
MATHEMATICA
s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; ad[1] = 0; ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); ad /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 20 2002, revised: Jul 19 2003
STATUS
approved