login
A064876
Last of four sequences representing the lexicographical minimal decomposition of n in 4 squares: n = A064873(n)^2 + A064874(n)^2 + A064875(n)^2 + a(n)^2.
5
0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 6, 6, 6, 6, 4, 7, 7, 7, 6, 7, 7, 7, 6, 7, 7, 7, 7, 6, 6, 6, 8, 8, 8, 7, 8, 8, 6, 6, 6, 8, 7, 7, 6, 8, 7, 7, 8, 9, 9, 9, 8, 9, 9, 9, 6, 8, 9, 9, 9, 8, 9, 9, 8, 9, 7, 7, 10, 10, 10
OFFSET
0,5
EXAMPLE
a(18) = 3: 18 = A064873(18)^2 + A064874(18)^2 + A064875(18)^2 + a(18)^2 = 0 + 0 + 9 + 9 and the other decompositions (0, 1, 1, 4) and (1, 2, 2, 3) are greater than (0, 0, 3, 3).
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 10 2001
STATUS
approved