login
A064875
Third of four sequences representing the lexicographical minimal decomposition of n in four squares: n = A064873(n)^2 + A064874(n)^2 + a(n)^2 + A064876(n)^2.
4
0, 0, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 2, 2, 0, 1, 3, 3, 2, 2, 3, 3, 2, 0, 1, 1, 1, 2, 2, 2, 4, 4, 3, 3, 0, 1, 1, 1, 2, 4, 4, 3, 2, 3, 3, 3, 4, 0, 1, 1, 4, 2, 2, 2, 4, 2, 3, 3, 3, 5, 5, 5, 0, 1, 1, 3, 2, 2, 5, 5, 6, 3, 5, 5, 6, 3, 5, 5, 4, 0, 1, 1, 4, 2, 2, 2, 6, 5, 3, 3, 3, 5, 3, 3, 4, 4, 7, 7, 0, 1, 1, 1, 2
OFFSET
0,9
EXAMPLE
a(19) = 3: 19 = A064873(19)^2 + A064874(19)^2 + a(19)^2 + A064876(19)^2 = 0 + 1 + 9 + 9 and the other decomposition (1, 1, 1, 4) is greater than (0, 1, 3, 3).
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 10 2001
STATUS
approved