login
A064874
Second of four sequences representing the lexicographical minimal decomposition of n in 4 squares: n = A064873(n)^2 + a(n)^2 + A064875(n)^2 + A064876(n)^2.
5
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 2, 2, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 3, 2, 0, 1, 1, 4, 0, 0, 1, 0, 0, 1, 1, 2, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 1, 3, 3, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 0, 1, 2, 0, 1, 1, 4, 0, 0, 1, 1, 2, 2, 2, 4, 0, 0, 1, 0, 0, 1, 1, 0
OFFSET
0,13
EXAMPLE
a(19) = 1: 19 = A064873(19)^2 + a(19)^2 + A064875(19)^2 + A064876(19)^2 = 0 + 1 + 9 + 9 and the other decomposition (1, 1, 1, 4) is greater than (0, 1, 3, 3).
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 10 2001
STATUS
approved